不同(伪)快度(η)下局部流平面之间的方位角关联可以揭示重离子碰撞中初始核物质密度分布的重要细节。对因子分解比(r2)及其导数(F2)的大量实验测量表明存在纵向流平面去相关。然而,非流动效应也会影响该观测量并阻碍对该现象的定量理解。在本文中,为了区分去相关和非流动效应,我们提出了一个新的累积量可观测量T2,它在很大程度上抑制了非流动。用一个简单的蒙特卡洛模型测试了该技术对不同初态场景和非流动效应的敏感性,最后将该方法应用于多相传输模型(AMPT)模拟的√Au+Au 碰撞事件
设计并准备抑制DDR(DNA损伤修复)相关蛋白的八面体Pt(IV)前药,CIS-WOG,含有Wogonin衍生物作为生物活性轴向配体。体外生物学研究表明,具有轴向官能团(CIS-WOG)的Pt(IV)前药显示出优于顺铂的细胞毒性,并反转了其对两对顺铂敏感和抗抗性细胞系的耐药性。进一步的机械研究表明,CIS-WOG的强大抗肿瘤活性是由于其对JWA的抑制以及与XRCC1的多相互作用以修复由Wogonin引起的DNA单链断裂(SSB)。可以得出结论,CIS-WOG是一种有前途的细胞毒性剂,可用于增强其相应的PT(II)基于PT(II)的药物的抗肿瘤活性,并通过衰减JWA介导的SSBS修复途径并引起凋亡。
在炼铁过程中,高炉是还原铁矿石的多相反应器。在此过程中,铁矿石和焦炭从炉顶装入,高温还原气体从炉底引入。随着气体上升,还原并熔化铁矿石,在粘结带中形成液态铁和炉渣。液体渗透过焦炭床到炉缸。在铁矿石的还原过程中,矿石软化,矿层被堆积的炉料压缩。众所周知,由于粘结带中矿石软化引起的结构变化对炉内气体渗透性有很大影响。矿石的软化行为受各种因素的影响,例如化学成分、还原气体成分、温度、物理性质等。为了了解粘结带,已经进行了几项实验来研究炉料的高温性质 1-6) 以及气体流动对粘结带中液体流动的影响
我们的产品和集成系统包括海底采油树、节流阀和流量模块、歧管管道系统、控制和自动化系统、井道系统、多相和湿气流量计以及其他技术。我们根据客户或油田的具体需求提供电动液压和全电动海底生产系统。我们的海底系统的设计和制造需要高度的技术专长和创新。我们的一些系统设计用于承受深水环境的极端静水压力,以及高达 20,000 磅/平方英寸 (psi) 的内部压力和高达 400º F 的温度。我们的集成海底生产系统的开发包括初步工程设计研究和油田开发规划,并考虑所有相关方面和项目要求,包括钻井计划和海底架构的优化。
BLDC 电机使用电子换向来控制流过绕组的电流。BLDC 电机在转子上使用永磁体。BLDC 电机包含转子位置传感器电子元件,因此绕组的电源输入波形与正确的转子位置一致。由于电刷中没有功率损耗,因此电机效率得到提高。在 BLDC 电机中,定子缠绕有以多相配置连接的电磁线圈,提供旋转磁场,电枢由带有永磁极的软铁芯组成。传感设备定义转子位置。换向逻辑和开关电子元件将转子位置信息转换为定子相的正确激励。传感设备包括霍尔效应传感器、绝对编码器、光学编码器和解析器。电子控制器可以单独使用,也可以与电机封装在一起。
在两个电极之间传输。已经对锂离子电池进行了广泛的研究,但几个关键过程,主要与它们对电极的反应性有关,但仍有几个关键过程尚待充分说明。[1]没有电解质在锂离子电池的负石墨电极上本质上是稳定的,而可逆细胞化学反应强烈依赖于固体电解质相(SEI)的形成。SEI是一个NM薄的多相复合层,通常是在锂离子电池的第一个电荷/放电周期之后从电解质的降解产物中形成的石墨。尽管几十年前已经建立了关于SEI重要性的一般性感,但其形成和操作机制仍在激烈地进行辩论。尽管如此,通常观察到SEI的性能在很大程度上取决于使用的电溶剂。可行的锂离子电池电解质上的溶剂上的必需需求是高电介质构造,低粘度,较大的液体温度间隔和与所有细胞成分接触的稳定性。[1]
热力学与相变:热力学中的热和功的概念、热力学系统、热力学第零定律。温度概念、第一定律的微分形式、第二定律的陈述、熵的概念、焓。晶体的热力学函数和关系。相变和多相平衡。[10] 电子能带理论:能带理论、固体的经典自由电子理论、固体的索末菲量子自由电子理论、周期势的布洛赫波函数、克罗尼希-佩尼模型和能带。费米能量和费米面、电子的有效质量、布里渊区和倒易晶格。[10] 固体的电子特性:磁场下的传输方程、回旋共振、磁场下的能级和态密度。朗道抗磁性、自旋顺磁性、德哈斯范阿尔芬效应。磁阻、经典和量子霍尔效应。 [10] 教科书和/或参考资料
摘要:目前的成核模型为晶体材料的形成提出了多种选择。然而,在分子水平上探索和区分不同的结晶途径仍然是一个挑战,特别是对于复杂的多孔材料。这些通常由具有有序框架和孔隙成分的大晶胞组成,并且经常在复杂的多相合成介质中成核,从而限制了深入表征。这项工作展示了如何在单相水合硅酸盐离子液体 (HSIL) 中详细记录结晶过程中的铝硅酸盐形态。观察结果表明,沸石可以通过由铝硅酸盐阴离子与碱金属阳离子成离子配对组成的离子配对预成核簇的超分子组织形成,并暗示 HSIL 中的沸石结晶可以在现代成核理论的范围内描述。
当前对电解铝阴极碳钠渗透的研究主要是测量阴极膨胀曲线,主要显示宏观特征。然而,显微镜结构通常是不流失的。作为多孔介质,阴极碳块的扩散性能与其内部孔结构紧密相关。将阴极碳块视为多相复合材料,本研究从微结构的角度研究了钠扩散过程。开发了一个预测钠扩散的模型,考虑了孔隙率,温度,结合效应,电流降低和分子比例等因素。在Python中实现了一个随机聚合模型,并将其导入到有限元软件中,以使用Fick的第二定律模拟钠扩散。结果表明,孔隙率提高,温度较高,结合效应降低,电流密度增加和较高的分子比增强了钠浸润,降低了扩散耐药性并增加了扩散系数。模拟与实验结果很好地对齐,证实了其准确性和可靠性。