我们给出了色玻璃凝聚态有效理论中相对论重离子碰撞中初始色场的色玻璃能量动量张量的简明公式。我们采用具有非平凡纵向相关性的广义 McLerran-Venugopalan 模型,推导出弱场近似下对称核碰撞的 ð 3 + 1 Þ D 动态演化的简明表达式。利用蒙特卡罗积分,我们以前所未有的细节计算了 RHIC 和 LHC 能量下早期可观测量的非平凡快速度分布,包括横向能量密度和偏心率。对于具有破坏增强不变性的设置,我们仔细讨论了 Milne 框架原点的位置并解释了能量动量张量的分量。我们发现纵向流动与标准 Bjorken 流动在 ð 3 + 1 + D 情况下有所不同,并提供了这种影响的几何解释。此外,我们观察到快速度剖面侧面的普遍形状,无论碰撞能量如何,并且预测极限碎裂也应在 LHC 能量下保持。
摘要:在之前的研究中,我们表明“讲述故事的文本”表现出的统计结构不是麦克斯韦-玻尔兹曼结构,而是玻色-爱因斯坦结构。我们的解释是,这是由于人类语言中存在“不可区分性”,因为故事不同部分的相同单词彼此之间无法区分,这与量子力学中出现的“不可区分性”非常相似,也导致了玻色-爱因斯坦而不是麦克斯韦-玻尔兹曼作为统计结构的存在。在本文中,我们着手解释人类语言中的这种玻色-爱因斯坦统计数据。我们表明,正是“讲述故事的文本”中存在的“意义”导致了玻色-爱因斯坦缺乏独立性,并提供了确凿的证据,证明“单词可以被视为人类语言的量子”,结构类似于“光子是电磁辐射的量子”。利用我们布鲁塞尔研究小组对纠缠的几项研究,我们还通过引入人类语言的冯·诺依曼熵表明,文本中“含义”的存在也使得整个文本的熵小于组成文本的单词的熵。我们解释了本文中的新见解如何适应称为“量子认知”的研究领域,其中量子概率模型和量子向量空间用于人类认知,并且也与量子结构在信息检索和自然语言处理中的使用相关,以及它们如何在那里引入“量化”和“玻色-爱因斯坦统计”作为相关的量子效应。受量子力学概念性解释的启发,并依靠新见解,我们提出了关于物理现实本质的假设。在此过程中,我们注意到这种新型的熵减少及其解释可能对量子热力学的发展很重要。我们同样注意到,它也可以对地球表面的物理现实本质产生原始的解释性图景,其中人类文化作为生命的延续而出现。
1.00850Chromocult®Coliform琼脂ES用于食品和动物饲料中大肠菌菌和大肠杆菌的检测。e是提高选择性的,因为食品基质中的预期细菌背景菌群较高,例如生碎牛肉,生碎鸡肉和生牛奶(经AOAC验证)。44657 ECD杯琼脂此大肠杆菌直接琼脂中的胆汁盐混合物广泛抑制伴随植物群的非渗透性肠道。荧光底物杯子的裂解和阳性测试证明了大肠杆菌的存在。1.10620Fluorocult®LMX肉汤,用于通过发色和荧光过程同时检测水,食物和乳制品中大肠菌细菌和大肠杆菌。81938 Hicrome™大肠菌琼脂推荐用于同时检测水和食物样品中的大肠杆菌和总大肠菌群。发色混合物含有两个发色底物,鲑鱼 - 盐和X-葡萄糖苷。大肠菌群产生的酶β-D-半乳糖苷酶裂解了鲑鱼,从而导致鲑鱼变成大肠菌群的红色。大肠杆菌裂解X-葡萄糖醛酸的酶β-D-葡萄糖醛酸苷酶(深蓝色至紫色的菌落与两种活性结合使用)。70722 Hicrome™大肠杆菌琼脂B hicrome E. Coli琼脂B用于食品中大肠杆菌的检测和枚举,而无需在膜过滤器上或通过吲哚试剂进行进一步确认。大多数大肠杆菌菌株可以通过存在高度特异性大肠杆菌的酶葡萄糖醛酸酶来区分其他大肠菌菌。大肠杆菌细胞吸收X-葡萄糖醛酸酯,细胞内葡萄糖醛酸酶分裂发色团和葡萄糖醛酸苷之间的键。释放的发色团给出了菌落的蓝色。73009 Hicrome™ECC琼脂Hicrome ECC琼脂是一种差异培养基,用于推定大肠杆菌和其他大肠菌群中的食品和环境样品中的其他大肠菌群。发色混合物包含两个染色体,作为X-葡萄糖醛酸和鲑鱼 - 盐。X-葡萄糖醛酸是由大肠杆菌产生的酶β-葡萄糖醛酸酶裂解的。鲑鱼 - 盐 - 由大多数大肠菌群(包括大肠杆菌)产生的酶半乳糖苷酶裂解。大肠杆菌菌落的颜色:蓝色/紫色85927 Hicrome™ECC选择性琼脂hicrome ecc选择性琼脂是一种选择性(tergitol作为抑制剂)培养基,建议同时检测水和食品样品中的大肠杆菌和大肠杆菌。成分甚至有助于共同受伤的大肠菌群迅速生长。发色混合物包含两个发色底物,作为鲑鱼 - 果胶和X-glucuronide。大肠菌群产生的酶β-D-半乳糖苷酶裂解了鲑鱼,从而导致鲑鱼变成大肠菌群的红色。大肠杆菌裂解X-葡萄糖醛酸酶产生的酶β-D-葡萄糖醛酸苷酶。大肠杆菌由于鲑鱼和X-glucuronide的裂解而形成了深蓝色至紫色的有色菌落。
1) 将大肠杆菌培养液(高拷贝质粒:2-10 ml)离心(12,000 x g,30秒),弃上清,得到沉淀。 ↓ ②加入150 μl A1 buffer(加RNase A),涡旋悬浮细胞。 ↓ ③加入250μl A2缓冲液,颠倒混合5次左右,静置2分钟。 [裂解] ↓ ④ 加入350 μl A3缓冲液,颠倒混匀,直至液体由蓝色变为完全无色。检查是否没有蓝色残留,然后离心(12,000 x g,3 分钟)。 ↓ ⑤将上清液转移到NucleoSpin® Plasmid EasyPure 柱中,离心(1,000-2,000 × g,30 秒)。 [结合] ↓ ⑥ 加入450 μl AQ缓冲液(+EtOH)并离心(12,000 × g,1分钟)。 [洗涤/干燥] ↓ ⑦向柱中加入50 μl AE缓冲液,室温下放置1分钟。 ↓ ⑧ 离心(12,000×g,1分钟)回收质粒溶液。 [洗脱]