私人同时消息(PSM)模型是多阶安全计算(MPC)的非相互作用版本,该版本已经过深入研究以检查安全计算的通信成本。我们考虑其量子对应物,私人同时量子消息(PSQM)模型,并检查量子通信的优势和此模型的事先纠缠。在PSQM模型中,K Parties P 1 ,。。。,P K最初共享一个常见的随机字符串(或在更强的环境中),并且它们具有私人经典输入x 1,。。。,x k。我每个p从私有输入X I和共享随机字符串(纠缠状态)生成量子消息,然后将其发送到裁判R。接收来自K派对的消息,R计算F(x 1,。。。,x k)来自消息。然后,除f(x 1,。。。,x k)作为隐私条件。我们获得了此PSQM模型的以下结果。(i)我们证明,隐私条件不可避免地增加了两党PSQM模型的通信成本,以及Applebaum,Holenstein,Mishra和Shayevitz提出的经典案例[Cryptology 33(3),916-953(2020)]。特别是,我们证明了PSQM协议中通信复杂性的下限(3- o(1)),具有共享随机字符串,用于2 n -pit Input的随机布尔函数,该功能比没有隐私条件的琐事上限2 n大。(ii)我们通过共享纠缠状态的PSQM协议的通信复杂性与共享随机字符串的沟通复杂性之间的两个因子差距进行了两个差距,该系数通过设计具有共享纠缠状态的多阶PSQM协议,用于扩展两方优等函数的总函数。(iii)我们证明了具有共享纠缠状态的PSQM协议的通信复杂性与具有共享的随机字符串之间的指数差距,以提供两方部分功能。
NSPGD1 系列是经过校准的表压传感器,它结合了最先进的 MEMS 传感器技术和 CMOS 混合信号处理技术,在带管端口的双列直插式封装 (DIP) 中生产出放大、完全调节、多阶压力和温度补偿传感器。NSPGD1 系列压力传感器适用于家用电器以及小型厨房和浴室家用电器。将压力传感器与信号调节 ASIC 结合在一个封装中,简化了高级硅微机械压力传感器的使用。压力传感器可以直接安装到标准印刷电路板上,并且可以从数字接口或模拟/频率输出获取放大的、高电平的、经过校准的压力信号。这消除了对额外电路的需求,例如补偿网络或包含自定义校正算法的微控制器。NSPGD1 系列设计用于 -10kPa ~ 10kPa 表压范围,非常适合洗衣机和洗碗机等家用电子产品。主要特点
摘要。在亚利桑那大学设计和开发了两个破坏性的太空望远镜概念;这些是20米的绿洲(用于研究恒星系统的旋转天文卫星)和8.5米的Nautilus。Oasis结合了突破性充气孔径和自适应光学技术,以实现20多米级的Spaceborne Terahertz/Far-Infrared望远镜的梦想。在Nautilus可见/近红外望远镜概念中,传统的主要镜子被一个〜8.5米的模式(多阶衍射工程)镜头取代,较低的面积密度较低10倍,而在传统系统中,较低的错误敏感性较低100倍,从而使大型型号的敏感性降低了,从而实现了较大的较大的单历光学空间望远镜。与当前的最新状态相比,绿洲和鹦鹉螺概念有可能大大降低任务成本和风险。
摘要 —频率编码量子信息为量子通信和网络提供了有趣的机会,基于电光相位调制器和傅里叶变换脉冲整形器的量子频率处理器范式为可扩展的量子门构建提供了途径。然而,迄今为止的所有实验演示都依赖于占用大量物理空间并产生明显损耗的离散光纤元件。在本文中,我们介绍了一种量子频率处理器的设计模型,该模型包括基于微环谐振器的脉冲整形器和集成相位调制器。我们估计了单个和并行频率箱 Hadamard 门的性能,发现了扩展到具有相对较宽带宽的频率箱的高保真度值。通过结合多阶滤波器设计,我们探索了紧密频率间隔的极限,这在体光学中极难获得。总体而言,我们的模型通用、易于使用且可扩展到其他材料平台,为集成光子学中未来的频率处理器提供了急需的设计工具。
通道注意机制致力于重新校准通道权重以增强网络的表示能力。然而,主流方法通常仅依赖全局平均池化作为特征压缩器,这显著限制了模型的整体潜力。在本文中,我们研究了神经网络中特征图的统计矩。我们的研究结果强调了高阶矩在增强模型容量方面的关键作用。因此,我们引入了一种灵活而全面的机制,称为广泛矩聚合 (EMA),以捕获全局空间上下文。基于该机制,我们提出了矩通道注意 (MCA) 框架,该框架通过我们的交叉矩卷积 (CMC) 模块有效地整合了多层基于矩的信息,同时最大限度地降低了额外的计算成本。CMC 模块通过逐通道卷积层捕获多阶矩信息以及跨通道特征。MCA 模块设计为轻量级,可轻松集成到各种神经网络架构中。在经典图像分类、目标检测和实例分割任务上的实验结果表明,我们提出的方法取得了最先进的结果,优于现有的通道注意方法。
现代纳米材料涂层工艺的特点是高温环境和复杂的化学反应,需要精确合成定制设计。这种流动过程极其复杂,除了粘性行为外,还具有传热和传质特性。智能纳米涂层利用磁性纳米粒子,可以通过外部磁场进行操纵。数学模型提供了一种廉价的洞察此类涂层动力学过程固有特性的方法。受此启发,在当前的工作中,开发了一种新的数学模型,用于双催化反应物种在轴对称涂层中扩散,该涂层包裹强制对流边界层流,该流来自浸没在饱和磁性纳米流体的均质非达西多孔介质中的线性轴向拉伸水平圆柱体。其中包括均相和异相反应、热源(例如激光源)和非线性辐射传输。部署了 Tiwari-Das 纳米级模型。使用 Darcy-Forchheimer 阻力公式来模拟多孔介质纤维的体积多孔阻力和二阶惯性阻力。磁性纳米流体是一种水性导电聚合物,由基础流体水和磁性 TiO 2 纳米粒子组成。TiO 2 纳米粒子是一种化学反应物质 (A),还存在第二种物质 (B)(例如氧气),它也发生化学反应。粘性加热和欧姆耗散也包括在内,以产生更物理上真实的热分析。这里提出的具有物质扩散(物质 A 和 B)的非线性守恒方程通过适当的流函数和缩放变量转换为一组非线性联合多阶 ODE。在 MATLAB bvp5c 程序中,使用四点 Gauss-Lobotto 公式求解上升非线性常微分边界值问题。使用 Adams-Moulton 预测校正数值方案(Unix 中编码的 AM2)进行验证。包括速度、温度、物质 A 浓度、物质 B 浓度、表面摩擦、局部努塞尔特数以及物质 A 和 B 局部舍伍德数的广泛可视化。关键词:Darcy-Forchheimer 模型;水性功能磁性聚合物;智能涂层流;二氧化钛纳米颗粒分数;非线性辐射;均相和非均相化学反应;数值;边界层包裹;努塞尔特数;舍伍德数。