MiranMozetič教授于1961年出生于斯洛文尼亚的卢布尔雅那,并在斯洛文尼亚马里波尔大学获得了电子真空技术博士学位。自2009年以来,他一直是薄膜结构和等离子体表面工程研究团队的负责人,自2010年以来,他一直是斯洛文尼亚卢布尔雅那国际研究生院的教授。MiranMozetič教授为各种材料的血浆处理完成了以下出色的发明。首先,他开发了一种对聚合物复合材料的血浆处理方法,该方法可以直接电化学金属化并构建了生产线。每年生产超过3000万件,已有十多年来。射频发生器的创新耦合可以在批处理模式下均匀地处理众多产品。Mozetič教授开发的第二种技术是一种在大气压下在水中维持低压等离子体的方法。该方法基于通过超级浪费建立稳定的气泡。电极浸入气泡饱和压力下的气泡中。在这种压力下(与经典的大气压等离子体相比,OH激进分子的相对较长的寿命)和经过超级浪费气泡的水的快速速度可以使水中的病毒快速失活。第三个等离子体技术是在连续模式下具有氢血浆的金属的脱氧化。Mozetič教授开发了一种方法并构建了生产线。第四,Mozetič教授开发了一种快速激活氟化聚合物的方法。均匀的等离子体使用辐射发电机的四极耦合在10 m以上的反应器中维持,因为由于经典耦合不合适,因此由于对长线圈的绝大阻抗不合适。用特氟龙或类似材料制成的产品用氢血浆处理或多或少。真空紫外线辐射和氢原子之间的协同作用会导致C-F键的分裂,并在氟化聚合物表面形成非常薄的聚烯烃层。在第二步中,用中性氧原子处理产物,以确保这些疏水材料的超亲养表面饰面。Mozetič教授开发的第五个等离子技术用于在连续模式下处理种子。他构建了一个8米长的拖车,该拖车在农场用于种子,消毒和表面激活的排毒,从而使种子的超亲水表面饰面使种子的超亲水表面饰面,因此在播种后迅速吸收了水。种子处理设备的容量超过1吨/小时,并且通过通过垂直等离子体反应器掉落种子来实现治疗均匀性。发明记录在欧盟和/或美国办事处授予的20份专利中。Mozetič教授在期刊的科学会议或讲习班上合着了400多种科学文章,并给予了大约100篇被邀请的,主题演讲或全体讲座。他的科学成就为应用和工业项目提供了坚实的背景,他的专业正在提高创新的解决方案和建造大型低压非平衡等离子体反应堆,这些血浆反应堆已用于批量生产。
摘要:利用活塞流反应器,实验研究了三种对称柴油沸程醚异构体的燃烧动力学。这些异构体分别是二正丁基醚 (DNBE)、二异丁基醚 (DIBE) 和二仲丁基醚 (DSBE)。流动反应器实验采用氧气作为氧化剂,氦气作为稀释剂,氧化在大气压和高压条件下进行,温度从 400 到 1000,间隔为 20 K。燃料、氧化剂和稀释剂的流速在不同温度下变化,以在化学计量条件下保持恒定的初始燃料摩尔分数 1000 ppm,停留时间为 2 秒。反应产物用气相色谱 (GC) 分析。根据结构,醚表现出不同程度的负温度系数 (NTC) 行为。然后将 GC 分析的形态结果与使用现有和新开发的化学动力学模型的模拟结果进行比较。大多数模拟产物浓度与实验数据具有合理的一致性。化学动力学模型用于阐明不同异构体的反应性和 NTC 行为的主要特征。化学动力学分析表明,三种异构体的燃烧行为受低温反应过程中形成的关键物种的影响。在常压下,DNBE、DIBE 和 DSBE 确定的关键物种分别是正丁醛、异丁醛和仲丁醇。
纳米制造技术的最新进展使得人们能够制造出具有纳米级自由空间间隙的真空电子器件。这些纳米电子器件具有冷场发射和通过自由空间传输的优势,例如高非线性和对温度和电离辐射的相对不敏感性,同时大大减少了占用空间,增加了工作带宽并降低了每个器件的功耗。此外,平面真空纳米电子器件可以很容易地以类似于典型的微纳米级半导体电子器件的规模进行集成。然而,这些器件中不同电子发射机制之间的相互作用尚不清楚,其他人已经注意到它们与纯 Fowler-Nordheim 发射不一致。在这项工作中,我们系统地研究了平面真空纳米二极管的电流-电压特性,这些二极管的曲率半径为几纳米,发射极和集电极之间有自由空间间隙。通过研究由两种不同材料制成的几乎相同的二极管在不同环境条件(如温度和大气压)下的电流-电压特性,我们能够清楚地分离出单个器件中的三种不同发射模式:肖特基、福勒-诺德海姆和饱和。我们的工作将实现对真空纳米电子器件的稳健而准确的建模,这对于需要能够在极端条件下运行的高速、低功耗电子器件的未来应用至关重要。
绿色氨就是这样一种化学衍生物,其液态能量密度为 3.5 kW h L 1.7 生产氨只需要水、空气和电力,而且燃烧时不会释放碳排放。图 1 显示了绿色氨的生产示意图。与液态氢(253 C(参考文献 7))相比,它可以在相对温和的条件下储存(大气压 33 C 或室温 10 bar(参考文献 5))。全球氨运输系统已经很完善和易于理解。目前,氨主要用作肥料,但是,如果作为能源载体,它可以直接使用,也可以裂解回氢气。尽管具有这些良好的特性,但在大多数情况下,绿色氨产生的能量超过液体化石燃料的成本,这种高成本是广泛采用氨作为能源载体的最大障碍。 10 虽然通过可再生能源发电和电解槽的技术改进有望降低成本,但仍需要进行严格的系统范围优化,以确保可靠且经济实惠的可再生能源的可用性。最近发表了许多评论,研究绿色氨在可再生能源经济中的作用。Yapicioglu 等人 12 研究了一系列氨生产和消费技术。Rouwenhorst 等人 13 专注于 1 至 10 MW 之间的工厂,回顾了各种最新技术进展,并设计了优化的生产设施。Valera-Medina 等人 10 专门研究了氨到电力的途径,解释了使用氨作为能源所需的许多技术考虑因素。牛津大学工程科学系,帕克斯路,牛津,OX1 3PJ,英国。电子邮件:rene.banares@eng.ox.ac.uk
性能/尺寸 深度等级:1000 米标准 3281 英尺 2500 米可选:8202 英尺 有效载荷:64 千克 (140 磅)铅压载物尺寸:高度:802 毫米 32.0” 长度:1398 毫米 56.0” 宽度:870 毫米 34.0” 空气中的质量:240 千克 529 磅0 节时的推力 (系柱拉力):前进:873 N 89 kgf 196 lbf 后退:598 N 61 kgf 134 lbf 横向:441 N 45 kgf 99 lbf 垂直:441 N 45 kgf 99 lbf 最大速度/工作电流:前进:>1.5 米/秒>3.5 Kt。>5.8 ft/s 反向: >1.0 m/s >2.5 Kt。>4.1 ft/s 横向: >0.75 m/s >1.5 Kt。>2.5 ft/s 垂直: >0.75 m/s >1.5 Kt。>2.5 ft/s 转弯速率:120 度/秒 控制系统 该系统包含一个表面控制单元 (SCU),可与位于车辆上的两个独立的单大气压外壳内的车辆电子设备进行通信。SCU 包括: - • 2 个 9 英寸彩色显示器 • 固定/远程飞行员控制台和操纵杆 • 调光器 • 自动深度和航向控制(高度可选) • 系绳/脐带缆转弯计数器 • 视频叠加系统 • 漏电保护系统
摘要尽管经过多年的广泛研究,但在我们不断变化的气候中,热带气旋(TC)活性的演变仍然不确定。这部分是因为该问题的答案主要依赖于几十公里的水平分辨率的气候模拟。此类仿真直到最近才能用于大多数建模中心,包括Pierre-Simon Laplace研究所(IPSL)。使用IPSL模型中的最新数值发展,我们执行了一系列仅遵循大气层的历史模拟,这些模拟遵循大气压协议。我们评估将分辨率从200公里增加到25公里对TC活性的影响。与以前的工作一致,我们发现TC活动的系统改善,相对于观察值的分辨率增加。然而,仍然缺乏与分辨率转化的TC频率的明确签名。环地理分布在单个盆地的规模上也有所改善。在北大西洋上尤其如此,在北大西洋上,与观察到的分布的一致在25公里处令人印象深刻。与观测值一致,TC活动与该盆地中的大规模环境和ENSO相关。相比之下,在北太平洋西部的25公里处,TC频率仍然太小,与重新分析相比,发现湿度和涡度的明显偏见。尽管我们发现了几个小弱点,但我们的结果表明,IPSL模型是研究气候时间尺度上TC的合适工具。因此,这项工作为进一步的研究开辟了道路,从而有助于我们对TC气候学的理解。
减少工业二氧化碳排放的领先技术之一是碳捕获和储存 (CCS)。现有出版物讨论了捕获过程的高能量需求,而忽略了二氧化碳运输所需的后续压缩过程,该过程也表现出强烈的能量需求。这项工作旨在研究和比较两种替代方法的能量需求,这些方法与传统工艺相比,用于将捕获的二氧化碳加压至 150 巴。捕获过程之后,二氧化碳通常接近大气压,由于压缩机的限制,需要多级压缩。在每个压缩阶段之后,都需要冷却以将流体保持在接近进一步压缩的最佳温度。所提出的替代方法利用处于超临界状态 (sCO2) 的压缩二氧化碳作为工作流体来回收压缩阶段中可用的热量。其中一种替代方法在每个冷却阶段在集成的开放式超临界朗肯循环 (sRC) 中使用 sCO2。除 sRC 之外的另一种方法在最终压缩阶段的捕获过程再生塔之前加热富含二氧化碳的液体流。压缩过程设计用于 2,779 吨/天的二氧化碳流,代表 400 MW 发电厂捕获的典型二氧化碳质量流量。结果表明,在测试的案例中,结合 sRC 和富含二氧化碳的流加热的情况是最节能的,比仅使用 sRC 的情况少耗能 5.11 MW,比没有中间冷却的传统压缩情况少耗能 4.31 MW。
摘要:本文提出了一个实验程序,用于在高达208 bara的高架压力下生成CO 2的水性纳米泡分散。它直接设置了总体积,外部压力和温度,并且整体组成是由水纳米泡分散体恒定质量扩展到具有材料平衡的低压(例如大气压)的。脱离离子水的结果表明,纳米泡分散体中的CO 2含量随系统压力而增加。在207.8 bara处获得了最大的CO 2浓度2.3 mol/L,该浓度比207.8 Bara时CO 2的固有溶解度高42.9%。在138.9 bara时观察到最大的溶解度增强,52.8%,与固有的溶解度相比。还用基于甲酸钠的缓冲溶液测试了CO 2的水纳米泡分散体,这在208 Bara时导致CO 2的1.52 mol/L的CO 2。这比具有相同离子强度的氯化钠溶液中Co 2,0.86 mol/L的固有溶解度高77%。从实验数据的热力学分析中的一个重要观察结果是,纳米泡本身可能不是CO 2的主要存储,但是它们的存在可以提高CO 2的水相过饱和水平。这与使用纳米跟踪分析直接测量气泡性能一致,其中CO 2作为气泡的含量比CO 2的固有溶解度小得多,即使气泡数密度为10 8 ml -1,并且气泡半径大于100 nm。
外壳 - C、F、G、R、T、W 和 Z 级:冲击挤压或机加工铝合金。H、K、N、S 和 Y 级:耐腐蚀钢。J 和 M 级:符合 MIL-DTL-38999 的高性能树脂。(仅限外壳基材。有关表面处理或表面处理,请参阅 MIL-DTL-38999。)垫圈 - 硅橡胶。环 - 耐腐蚀钢,钝化,最大厚度为 1.020 毫米(0.04 英寸)。绳索 - 绝缘不锈钢,钝化。允许使用 ASTM-A967、实践 D 或同等方法进行钝化或钝化表面处理验证。绝缘层应能承受 200°C 环境温度。紧固件 - 不锈钢,钝化。选项:铝与盖子一体。配合连接器:参见 MIL-DTL-38999,系列 III。垫圈应粘合到盖子上,或机械固定。绳索应在紧固件上自由旋转。紧固件拉伸强度:保护罩和绳索组件应能承受施加在轴向和纵向上的 25 磅自重拉伸载荷。载荷应施加在绳索组件的末端并保持 5 分钟。绳索组件不得与保护罩分离或损坏绳索组件。轴向和纵向均为 25 磅。负载应施加在绳索末端。空气泄漏:测试应符合 EIA-364-02 的规定,但测量的最短时间应为 10 秒。空气泄漏率不得超过每小时 1 大气压立方英寸 (4.55 X 10 -3 cm 3 /s)。保护盖应与已移除触点或插件的连接器配对,以便可以对保护盖或储存容器内部施加 10 lbft/in 2 (.703 Kg/cm 2 ) 的压力。资格认证 (所有类别)。资格认证应符合 MIL-DTL-38999 的规定,但仅需进行以下测试顺序:
摘要低速亚音速测试 • WBF 研究和开发风洞是一个闭式回流连续流动回路。 • 特性(适用于一个大气压运行,80% 功率) 马赫数:0 到 0.25 雷诺数:0 到 1.8 x 10 6 每英尺 动压:0 到 67 psf 温度:0 到 100°F 测试区域:10 英尺 x 7.5 英尺椭圆形部分,15 英尺长 • 典型测试项目包括飞机开发、非稳定翼型流场研究、发动机舱诱导涡流生成、地平面影响、阵风相互作用、旋翼。 • 数据采集系统包括与计算机系统相连的力天平,用于在线记录、存储和检查原始、简化或图形显示的输出。 32 通道数字数据记录 • 多用户设施允许同时进行数据比较或操作,以及相关计算以进行分析。 • 压力测量系统包括三个计算机控制的 Scani 阀和 Setra 传感器,其平坦频率响应可达 800 Hz。• 外部六分量主机械平衡适用于升力负载达 3000 磅的支柱式模型。内部应变计平衡适用于负载达 100 磅的支柱式支架、模型组件等。• 辅助空气供应用于推进装置、喷射、边界层控制等。在 60 或 125 psi 时,连续流速分别为 1.5 或 0.5 lb/sec,在 100 psi 时间歇为 4 lb/sec,在 22 psi 时为 9 lb/sec。• 阵风发生器系统用于纵向和水平阵风。近似值