太赫兹技术在数据通信、雷达探测、高分辨率成像等领域展现出巨大的发展潜力,但这些应用也面临着大气吸收和自由空间路径损耗导致的传输距离短的问题[1-3]。解决该问题的主要方法是增加天线增益来补偿这些损耗,但大多数高增益天线不易操控,传播角度固定,降低了系统的实用性。作为解决方案之一,太赫兹波前整形技术可以灵活地操控光束方向和波前特性,满足太赫兹系统的应用需求,例如在点对点通信系统中可以改善太赫兹光束方向性,以增加传播距离;在目标雷达系统中可以切换多光束波前特性,实现多区域检测[4,5]。在太赫兹高分辨率成像中,波前模式掩模可以切换,为系统提供更多的感知信息[6-8]。为了实现这些目标,太赫兹波前整形需要由多个通道合成,携带适当可变的相位信号。
4AOP 自动大气吸收图集业务版本 6SV1 太阳光谱中卫星信号的第二次模拟,版本 1 ASCII 美国信息交换标准代码 ANOVA 方差分析 ASTER 先进星载热发射和反射辐射计 BRDF 双向反射分布函数 CASI 紧凑型机载光谱成像仪 CDOM 有色溶解有机物 CRTM 社区辐射传输模型 CNES 法国国家空间研究中心 CRTM 社区辐射传输模型 CRTM 社区辐射传输模型 CZCS 沿海区彩色扫描仪 ENVISAT 环境卫星 ESA 欧洲航天局 FOV 视场 GDAL 地理空间数据抽象库 GIS 地理信息系统 GPS 全球定位系统 GRASS 地理资源分析支持系统 GRETL GNU 回归、计量经济学和时间序列库 HCMR 希腊海洋研究中心 GUI 图形用户界面 HyMap高光谱测绘仪 ILWIS 综合陆地和水域信息系统 iPAQ internet CompAQ 出品的掌上电脑 KOPRA Karlsruhe 优化和精确辐射传输算法 LAD 最小绝对偏差 LAI 叶面积指数 Landsat TM Landsat 专题测绘仪 Landsat ETM+ Landsat 增强专题测绘仪 Plus MERIS 中等分辨率成像光谱仪 MIPAS 用于被动大气探测的迈克尔逊干涉仪 MODIS 中分辨率成像光谱辐射计 NASA 美国国家航空航天局
4AOP 自动大气吸收图集操作版本 6SV1 太阳光谱中卫星信号的第二次模拟,版本 1 ASCII 美国信息交换标准代码 ANOVA 方差分析 ASTER 先进星载热发射和反射辐射计 BRDF 双向反射分布函数 CASI 紧凑型机载光谱成像仪 CDOM 有色溶解有机物 CRTM 社区辐射传输模型 CNES 法国国家空间研究中心 CRTM 社区辐射传输模型 CRTM 社区辐射传输模型 CZCS 沿海区彩色扫描仪 ENVISAT 环境卫星 ESA 欧洲空间局 FOV 视场 GDAL 地理空间数据抽象库 GIS 地理信息系统 GPS 全球定位系统 GRASS 地理资源分析支持系统 GRETL GNU 回归、计量经济学和时间序列库 HCMR 希腊海洋研究中心 GUI 图形用户界面HyMap 高光谱测绘仪 ILWIS 综合陆地和水域信息系统 iPAQ internet CompAQ 出品的掌上电脑 KOPRA Karlsruhe 优化和精确辐射传输算法 LAD 最小绝对偏差 LAI 叶面积指数 Landsat TM Landsat 专题测绘仪 Landsat ETM+ Landsat 增强专题测绘仪 Plus MERIS 中分辨率成像光谱仪 MIPAS 用于被动大气探测的迈克尔逊干涉仪 MODIS 中分辨率成像光谱辐射计 NASA 美国国家航空航天局
教学大纲 第一单元:通信卫星:轨道和描述:卫星通信简史、卫星频段、卫星系统、应用、轨道周期和速度、轨道倾角的影响、方位角和仰角、覆盖范围和斜距、日食、轨道摄动、卫星在地球静止轨道上的位置。 第二单元:卫星子系统:高度和轨道控制系统、TT&C 子系统、高度控制子系统、电源系统、通信子系统、卫星天线设备。 卫星链路:基本传输理论、系统噪声温度和 G/T 比、基本链路分析、干扰分析、指定 C/N 的卫星链路设计(有和没有频率重用)、链路预算。第三单元:传播效应:介绍、大气吸收、云衰减、对流层和电离层闪烁和低角度衰落、雨致衰减、雨致交叉极化干扰。多址:频分多址 (FDMA)、互调、C/N 计算。时分多址 (TDMA)、帧结构、突发结构、卫星交换 TDMA 机载处理、需求分配多址 (DAMA) – 需求分配类型、特性、CDMA 扩频传输和接收第四单元:地面站技术:发射机、接收机、天线、跟踪系统、地面接口、功率测试方法、低轨道考虑。卫星导航和全球定位系统:无线电和卫星导航、GPS 定位原理、GPS 接收机、GPS C/A 码精度、差分 GPS。 UNIT-V:卫星分组通信:通过 FDMA 传输消息:M/G/1 队列、通过 TDMA 传输消息、纯 ALOHA-卫星分组交换、时隙 Aloha、分组预留、树算法。教科书:
1 显示了可用于 ATR 应用的各种传感器类型、武器平台类型、目标类型和先验信息。电磁波谱中能量的大气吸收决定了效用,并指导了常用于 ATR 应用的可见光、前视红外 (FLIR)、激光雷达、微波/毫米波雷达和声学传感器的开发。表 2 显示了这些传感器用于目标识别的工作原理和性能特征。术语 ATR 包括自主识别和辅助识别(或“人员在环”的提示)。在提示中,获取由瞄准系统完成,但最终识别由人完成。尽管许多研究人员希望自主执行各种各样的任务,但服务只会勉强自动化关键的操作员功能。人们天生就偏向于人类操作员的灵活性(例如,尽管拥有出色的陆基和海基战略导弹,但空军仍然依赖有人驾驶的战略核轰炸机)。人们更愿意将操作员从人类生存能力较低的任务中移除。士兵可能会远离“行动”,但预计不会放弃控制权。有“人在回路中”的辅助系统将优先于自主系统。现在已经确定,ATR 是一个多学科领域,需要在传感器、处理算法、架构、实施和软件和硬件系统评估方面拥有多样化的技术和专业知识。相关的计算机视觉和模式识别技术和系统已经从使用统计模式识别方法发展到基于模型的视觉,再到基于知识的系统。最近,实验室也在开发针对部分 ATR 问题的自适应和学习系统。图像理解 (IU) 与计算机视觉同义。IU 的重要目标之一是开发技术
1.0 引言 空气污染物来自各种来源,它们改变了大气的成分并影响生物环境。空气污染物的浓度不仅取决于空气污染源的排放量,还取决于大气吸收或分散这些排放物的能力。空气污染浓度在空间和时间上有所不同,由于气象和地形条件的变化,空气污染模式会随着不同地点和时间的变化而变化。空气污染物的来源包括车辆、工业、家庭来源和自然来源。由于周围空气中存在大量空气污染物,人口和财产的健康和财产受到不利影响。为了遏制空气质量的恶化,政府。印度于 1981 年颁布了《空气(污染防治)法》。1986 年《环境(保护)法》进一步强调了这一责任。有必要通过持续的空气质量调查/监测计划来评估当前和预期的空气污染。因此,中央污染控制委员会于 1984 年至 1985 年在国家层面启动了国家环境空气质量监测 (NAAQM) 网络。该计划后来更名为国家空气质量监测计划 (NAMP)。本报告介绍了在 NAMP 下开展环境空气质量监测的指南。进行环境空气质量监测是为了生成符合监测目标的数据。需要环境空气质量监测计划来确定现有的空气质量、评估控制计划的有效性并制定新计划。本报告旨在开发更统一的空气监测网络,以便各个站点的数据具有可比性。本报告讨论了空气质量监测网络的各个方面,例如,应监测哪些污染物、应在何处进行监测以及各种监测技术。还讨论了印度开展环境空气质量监测的法律要求。这些要求是确定环境空气质量监测目标的基础。环境空气质量监测网络涉及在该国多个地点测量多种空气污染物,以满足监测目标。。因此,任何空气质量监测网络都涉及污染物的选择、位置的选择、频率、采样持续时间、采样技术、基础设施、人力以及运营和维护成本。网络设计还取决于大气中各种常见来源的污染物类型,称为常见城市空气污染物,例如悬浮颗粒物 (SPM)、可吸入悬浮颗粒物 (RSPM)、二氧化硫 (SO 2 )、氮氧化物 (NOx) 和一氧化碳 (CO) 等。主要选择的区域是交通密度高、工业增长、人口及其分布、排放源、公众投诉(如果有)和土地使用模式等区域。通常,大多数时候网络设计的基础是污染源和存在的污染物。