术后复发是否会影响患者的后续治疗计划和存活。其中,在手术期间很难完全去除侵入上层或羊角区域的pit,并在手术后12%约58%重复出现。(在本文中,关于诊断和治疗中国经常性垂体腺瘤的专家共识的定义是在2019年的:垂体腺瘤切除后消失的症状和迹象再次出现;内分泌指数再次出现;内分泌指数再次增加了缓解标准后再次增加;,即使肿瘤被完全切除,10%〜20%也将在5到10年内复发。Tu-Mors的复发为患者带来了财务和心理负担,并降低了他们的生活质量。本文主要回顾了皮特内特在三个方面的术后复发的因素:IM的特征,病理因素和其他因素,并提出了有关PITNET临床治疗的个人建议,旨在为该疾病的临床治疗提供参考。
Lin 等 [31] 开发一款基于 VR 的上肢投篮康复系统 , 收集患者的肌电数据 结合肌电反馈 , 基于 VR 的训练可能会显着提高康复疗效 Lakshminara- yanan 等 [47] 15 名参与者在 VR 和非 VR 条件下 , 对 3 项手部运动进行观察 基于 VR 的动作观察 , 可以增强 KMI 诱导的 ERD 反应
间充质干细胞(MSC)具有自我更新能力,表现出多种分化的能力,并展示了关键特征,例如分泌作用,病变位点迁移和免疫调节潜力,使它们具有强大的神经退行性疾病疗法的候选者。许多研究表明,可以有效刺激MSC以区别于神经元。在直接将原始,未分化的MSC移植到神经退行性疾病的动物模型中的研究中已经观察到了积极的结果,但证据表明,通过组织工程技术诱导神经元差异的预处理可以显着增强其治疗作用。各种策略,例如化学物质,生长因子,与神经细胞共培养,基因转染和miRNA,可以诱导MSC的神经分化。其中,源自化学物质的小分子特别有效,因为它们有效,迅速诱导了MSC的神经分化,单独或组合。本综述旨在分析使用小痣来促进MSC分化为神经细胞的进步,从而对基于MSC的临床神经退行性疾病的疗法提供了对其潜在应用的见解。
脑机接口( brain-computer interface , BCI )是在大脑与外部设备之间建立直 接交互的通信和控制通道。行业起步最早可追溯至 1924 年,经历了前期 的理论探索期、科学论证期,目前已进入成果落地时期。脑机接口最早在 20 世纪未提出,目的是帮助残疾人重新行走或支配上肢,技术发展至今已 更能应用于正常人的生活和生产。随着脑机接口、人工智能、生物医学工 程、神经工程与康复工程、认知神经科学与心理科学等的发展, BCI 的内 涵和外延在不断丰富。近年来,脑机接口技术在医疗领域不断取得新成果, 尤其在临床康复领域,目前以脑功能评估为目的的脑机交互检测,以解码 交流与设备控制为目的的脑机接口应用,以功能重塑康复为目的的脑机训 练反馈等领域的探索及应用越来越深入。随着技术的应用领域不断拓宽, 未来将逐步应用于游戏娱乐、学习教育、智能家居和军事领域。
Cowan 及其同事 (2000) 回顾了神经科学的历史根源以及 20 世纪的发展阶段。在 19 世纪后期和 20 世纪初期,出现了许多里程碑式的发现,每一项发现都对神经解剖学或神经生理学等长期存在的学科做出了重大贡献。然而,Cowan 等人 (2000) 指出,这些发现都没有超越传统的学科界限,而这正是当代神经科学领域的决定性特征。Kandel 和 Squire (2000) 得出结论,现代神经系统细胞科学基于两项基本发现:神经元学说和离子假说。Wilhelm His 将轴突描述为未成熟神经细胞的产物,这是朝着神经元学说的形成迈出的重要一步。四个科学领域——胚胎学、组织学、生理学和病理解剖学——都提出了神经元之间存在不连续性的证据。西班牙神经学家拉蒙·卡哈尔 (Ramon y Cajal) (1959) 证明神经纤维具有与其他神经细胞接触但不会融合的终端结构——它们是毗连的而不是连续的——这为神经元的发育提供了关键支持。拉蒙·卡哈尔证明大脑由被称为神经元的离散细胞组成,这些细胞被认为是基本信号传导单位,从而创立了神经元学说。在拉蒙·卡哈尔的时代,神经发生的研究是在组织学领域进行的。在当代神经科学中,人们一直关注神经元发育所涉及的分子和细胞机制。离子假说由艾伦·霍奇金、安德鲁·赫胥黎和伯纳德·卡茨于 20 世纪 40 年代末提出,该假说用特定离子的运动来解释神经细胞的静息电位和动作电位,从而使神经系统能够根据细胞生物学共有的物理化学原理来理解(Kandel & Squire,2000 年)。20 世纪 50 年代和 60 年代见证了神经解剖学、神经药理学、神经化学和行为科学融入神经科学(Cowan 等人,2000 年)。 1978 年初,《神经科学年度评论》创刊号出版,预示着神经系统多学科研究方法的下一阶段的开始:分子神经科学的出现、重组 DNA 技术和分子遗传学在神经生物学问题中的应用,以及神经科学与其他生物科学在共同的知识框架内的统一(Ciaranello 等,1995;Lander 和 Weinberg,2000)。
摘要全球计算机系统的新时代已经是现实。神经电子的互联网,结合人造神经元与人类神经元一起工作,人类神经元,人与机器之间的融合,将互联网作为平台。这项工作提出了更多关于已经成为现实的创新概念的更多信息,这首先是共同集成并出于相同目的而起作用的三种重要的新兴技术:脑部计算界面,人工神经网络和先进的记忆技术,也称为记忆。关键字:神经电子学,人工神经元,高级抽象记忆技术全球计算机系统的新时代已经成为现实。神经电子学的互联网,人造人造结合了神经元与人类神经元,融合式男人和机器一起工作,具有互联网是平台。这项作品提出了更多旨在澄清已经成为现实的创新概念,这首先是整合了三种重要的新兴技术并出于相同的目的而起作用:脑部计算机界面,人工神经网络和先进的技术,也称为Memistors。关键字:神经电子学,人工神经元,高级记忆技术。
神经科学的起源:探索大脑 25 多年来,我们一直教授一门名为“神经科学 1:神经系统简介”的课程。这门课程取得了巨大的成功——在该课程的发源地布朗大学,大约四分之一的本科生选修了这门课程。对一些学生来说,这是他们从事神经科学事业的开始;对另一些学生来说,这是他们在大学里选修的唯一一门科学课程。神经科学入门课程的成功反映了每个人对我们如何感知、运动、感受和思考的着迷和好奇。然而,我们课程的成功还源于我们的教学方式和重点。首先,这门课程没有先修课程要求,因此理解神经科学所需的生物学、化学和物理学元素会在课程进展过程中涵盖。这种方法确保在课程进展过程中不会落下任何学生。其次,大量使用常识性隐喻、现实世界的例子、幽默和趣闻轶事,提醒学生科学是有趣、平易近人、令人兴奋和好玩的。第三,本课程并不涵盖神经生物学的全部内容。相反,重点是哺乳动物的大脑,并且尽可能关注人类的大脑。从这个意义上讲,本课程与大多数医学新生所学的内容非常相似。现在,许多学院和大学的心理学、生物学和神经科学系都开设了类似的课程。《神经科学:探索大脑》第一版旨在为 Neuro 1 提供一本合适的教科书,融合了使本课程成功的主题和哲学。根据我们学生和其他大学的同事的反馈,我们扩展了第二版,包括更多行为神经科学主题和一些新功能,以帮助学生了解大脑的结构。我们一定做对了,因为这本书现在已成为世界上最受欢迎的神经科学入门书籍之一。看到我们的书成为开设神经科学入门新课程的催化剂,我们感到特别欣慰。
1. 简介 2015 年,Pedram Moheseni 和 Randolph Nudo 发明并获得专利。一年后的 2016 年,埃隆·马斯克创立了一家美国公司并购买了这项专利,截至 2019 年 7 月,已获得 1.58 亿美元。 Neuralink 大脑芯片融合了两种智能(技术和人类),实现了人与人工智能的互动。它与具有重要科学技术价值的 BMI 技术相结合。这是一个革命性的项目,可以帮助患有瘫痪、帕金森氏症等疾病的人。在不断发展的神经科学和技术领域,Neuralink 大脑芯片作为一项突破性的创新应运而生,有望彻底改变我们与人脑互动和理解人脑的方式。Neuralink 由一支有远见的工程师和神经科学家团队开发,代表了尖端神经技术与人工智能无限潜力的融合。 Neuralink 脑芯片的核心是一种复杂的神经接口设备,旨在建立人脑与外部技术之间的无缝通信。通过复杂的电极和传感器网络,该芯片直接与大脑的神经元连接,实现双向通信,精度和速度都令人惊叹。Neuralink 脑芯片最引人注目的方面之一是它能够以前所未有的精度解码神经信号,为各个领域的无数应用打开了大门。从恢复丢失的
本研究探讨了大脑的问题,大脑包含“人性”的特质,是一种权利,并且在使用大脑作为自由意志的控制中心的权利背景下保留这种权利,以及神经科学和技术对其安全构成威胁。特别是在21世纪,由于神经科学和神经技术领域的迅猛发展,研究的性质已经超出了医学/科学领域。此外,随着相关的发展,原本应该作为疗愈与治疗主题的研究,也开始包括个体与社会问题的可能性。尤其是BCI(脑机接口)、neurolink、metaverse等对人脑进行直接或间接干预的研究,将法律问题提到了议事日程。由于人的意志中心和人的属性所在的行政区域存在被外部操纵的风险,引发了有关大脑及其安全作为人类自然权利的讨论。此外,相关问题在国内法和国际法上都存在严重空白。在这种背景下,确定已达到的程度以及其法律限度对于防止将来可能发生的更大问题至关重要。