食品工业生产数百万吨的自然副产品。通过这项研究,我们遵循了一种使用丢弃的环境友好的策略,例如来自琼脂工业的大豆生产和海洋纤维素(Cell)的大豆蛋白分离株(SPI),以实现附加的价值应用。特别是,这项工作着重于基于大豆蛋白和纤维素的膜的发展,以及它们作为电池分离器膜朝着可持续储能系统的验证。基于物理相互作用,带有细胞的SPI膜与电解质显示出极好的兼容性。这些物理相互作用有利于膜的肿胀,在液体电解质中三天后达到1000%的肿胀值。膜的热稳定至180°C。经过液体电解质的约束后,观察到膜的微结构变化,但要保持多孔结构,而材料则易于处理。阴极半细胞中的离子电导率值,锂转移数量和电池性能分别为1C速率的5.8 ms.cm - 1、0.77和112 mAh.g-1。总体而言,考虑到环境精神问题和循环经济,可以证明可以根据废料获得更可持续的高性能锂离子电池。
抽象的超氧阴离子(O 2• - )是有害的活性氧(ROS)。跨性金属离子复合物通常被用作消除ROS的抗氧化剂。在这项工作中,首先通过氢键与聚乙烯基醇结合了大豆蛋白分离株(SPI),是一种可生物降解的蔬菜蛋白,以合成基于SPI的聚合物微凝胶(SPI-PMG)载体。此外,通过结合4-羟基水杨酸氨基酸Schiff-bas bas bas Metal Metal Complacees(Hosalcysm,M = Cu,Zn),制备了一种新型水溶性的生物聚合物/金属复合物(SCM@SPI-PMG)。SPI-PMG的结构,形态和稳定性的特征是傅立叶变换红外光谱,扫描电子显微镜,X射线衍射模式和热量分析。结果表明,获得的SPMG的直径范围为150至400 nm。此外,通过氮气四唑轻还原测定法确定了生物聚合物 - 金属配合物的清除超氧化阴离子自由基活性。与载体SPI-PMG相比,SCM@SPI-PMG的清除活动得到了极大的改进。值得注意的是,SCCU@SPI-PMG的超氧化物歧化酶(SOD)模拟达到297.10%,SCZN@SPI-PMG模拟达到35.13%。因此,SCCU@SPI-PMG可以被视为酶SOD的生物功能模仿,并且在抗氧化药物领域具有有希望的应用前景。
摘要:大豆是一种具有大量蛋白质含量的谷物产品。据信,源自大豆蛋白的生物活性肽具有维持脑部健康的能力,例如神经递质系统。大脑图 - ping是研究功能性人脑的大脑电活动的映射。在这项研究中,提出了基于功率谱的2D脑图,以查看使用19-通道Elec -trocephalogram消耗大豆肽之前的青少年脑活动的差异。在实验中,涉及16至24岁年龄范围的青少年(在实验前的7-8小时内禁食)。2D脑图 - PING结果表明,消耗大豆肽后,从α波中看到的受试者的活性增加了5%。
测试食物(8只狗/食物)。一种常规的高质量狗食,含有动物的蛋白质作为对照食品(CON)。配制了两种柔韧性食品,可提供来自动物基蛋白的总蛋白质的12%,这些蛋白质与干酵母和豌豆蛋白(Flex-PEA)或大豆蛋白(Flex-Soy)的平衡。一种没有动物或大豆成分的素食食品,含有干酵母,玉米面筋粉和豌豆蛋白作为蛋白质来源(纯素食)。饮食的成分组成如表1所示。该研究的目的是评估这些食物对可口,可接受性,消化率,粪便质量和粪便微生物组的影响。这项研究的结果对于开发营养完整的宠物食品很有价值,并与当今宠物主人的不断发展的期望,健康方面的考虑和日益增长的生态意识相符。
摘要本文旨在研究几种新型保存方法对存储期间湿konjac面条质量的影响。湿的konjac面条由konjac粉,大豆蛋白分离株和地瓜淀粉制备。通过单个酸(pH = 3)浸泡(CA组),酸浸泡和真空包装(CF组)以及碱性浸入,然后是巴氏灭菌和真空包装(CI组)。结果,CF和CI组可以很好地抑制在室温下(28±1°C)储存过程中微生物的生长8周。与对照组(CK)组相比,经过处理的湿konjac面条也具有稳定的感官质量,更好的气味和味道,并且具有更高的咀嚼性和弹性。与CI治疗相比,CF治疗在白色,感觉特征,纹理特性和产品的内部微观结构方面表现出更理想的性能。总而言之,使用酸浸泡和真空包装技术是确保湿konjac面条的预期货架的一种有效方法。这项技术还可以为企业提供一些理论和技术支持,以处理和生产湿的konjac面条和其他高水分食品。
摘要:尽管大豆蛋白质量很高,但由于 Kunitz (KTi) 和 Bowman-Birk 蛋白酶抑制剂 (BBis) 的存在,生大豆和豆粕不能直接添加到动物饲料混合物中,这会降低动物的生产率。热处理可以显著灭活胰蛋白酶和糜蛋白酶抑制剂 (BBis),但这种处理耗能大、成本高,并对种子蛋白的质量产生负面影响。作为一种替代方法,我们采用 CRISPR/Cas9 基因编辑来在 BBi 基因中产生突变,从而大幅降低大豆种子中的蛋白酶抑制剂含量。农杆菌介导的转化被用于产生几个稳定的转基因大豆事件。使用 Sanger 测序、蛋白质组学分析、胰蛋白酶/糜蛋白酶抑制剂活性测定和 qRT-PCR 将这些独立的 CRISPR/Cas9 事件与野生型植物进行了比较。总的来说,我们的结果表明,影响大豆主要 BBi 基因的一系列等位基因功能丧失突变的产生。两个高表达种子特异性 BBi 基因的突变导致胰蛋白酶和糜蛋白酶抑制剂活性大幅降低。
本研究重点关注基于可再生材料的组织等效模型的剂量测量,该模型使用大豆蛋白基粘合剂、红树林 Rhizophora spp. 木材、氢氧化钠和生物基交联剂(衣康酸聚酰胺胺-环氧氯丙烷树脂)设计,配有电离室和 Gafchromic TH EBT3 放射变色膜剂量计。测量是在 6 和 10 MV 的光子以及 6 和 15 MeV 的电子束下进行的。刨花板样品在 100 厘米 SSD 处暴露于 100 cGy 的剂量和场大小(10 x 10 cm 2)。剂量计分别在模型板内的测量深度 1.5、2.5 和 3.0 cm 处进行照射。刨花板表现出优异的物理和机械性能以及超过可接受标准的尺寸稳定性。剂量测量结果显示,剂量与水和固体水均高度一致。此外,测量的剂量特性之间的比较在测试场大小的最大剂量的光子和电子能量的 ± 2%、± 2%、± 10% 和 ± 5.5% 范围内。这项研究成功地证明了 SPC-SPI/NaOH/IA-PAE 粘合的红树属植物刨花板是有前途的组织等效体模材料,具有医疗应用的优点。
大豆突变体 lox3 具有 Lox3 基因座中的突变等位基因,是利用 CRISPR/Cas9 系统通过定点诱变生成的。为了评估种子中 LOX3 活性降低的影响,检测了 lox3 在温度胁迫下的发芽能力。在所有温度条件下,lox3 种子都比野生型种子发芽更早。随着温度的升高,这种差异变得更加明显。随后,为了模拟种子的长期储存,通过将种子暴露在高温高湿条件下进行老化处理。虽然大多数野生型种子在老化处理后没有发芽,但大约 80% 的 lox3 种子发芽了。这表明 LOX3 活性的降低导致种子对长期储存的耐受性增强。为了阐明生理机制,对老化处理后的种子进行了测量,测量了通常用于评估脂质过氧化的丙二醛 (MDA) 含量。lox3 样品中的 MDA 含量低于野生型样品。这一结果表明 lox3 种子中的脂质过氧化降低了。为了评估基因表达水平,对 lox3 和野生型样本进行了转录组分析。转录组分析显示,野生型种子中应激反应基因的表达增加。这表明野生型种子比 lox3 种子受到的应激更严重。因此,我们证明种子中 LOX 活性的降低可能即使在高温胁迫或种子长期储存下也能保持发芽能力。日本大豆蛋白研究 23,35-40,2020。