目录 章节 页码 1. 简介................................................................................................................................ 1 2. 背景 ................................................................................................................................ 4 3. 项目经验教训总结 ........................................................................................................ 11 A. UC-35 项目 ................................................................................................................ 11 B. RC-26 项目 ................................................................................................................ 12 C. B737-200 租赁以支持 E-6 在飞训练 ............................................................................. 14 D. C-20G 在飞支持 ............................................................................................................. 15 4. 飞行许可流程改进建议 ............................................................................................. 17 A. 海军独特因素的级别 ............................................................................................................. 17 B. 最小差异 ............................................................................................................................. 18 C. 任务环境差异 ............................................................................................................. 19 D. 主要配置差异 ............................................................................................................. 21 E. 标准 .............................................................................................................
近年来,个体生物年龄(可能与实际年龄不同)的概念引起了医学研究界的极大兴趣,因为衰老是多种与年龄相关的健康状况和死亡的重要风险因素。同一实际年龄的个体之间的健康结果也存在很大的异质性(Jylhävä et al., 2017)。在过去的几十年中,研究强调,由于遗传和环境因素(如生活方式行为)之间复杂的相互作用,人与人之间的生物衰老过程存在差异(Cole et al., 2017, 2019; Fratiglioni et al., 2020)。鉴于整个衰老过程中身体和大脑的持续变化,实际年龄是死亡、慢性疾病和功能障碍的一个关键风险因素(Jylhävä et al., 2017)。大脑中各种与年龄相关的变化与多种神经退行性疾病的发展密切相关,包括阿尔茨海默病 (AD) 和血管性痴呆 (Hou et al., 2019)。与其他与年龄相关的健康状况以及痴呆症领域一样,相同实际年龄的人在症状表现和潜在脑病理方面存在显著的异质性 (Ferreira et al., 2020)。因此,量化生物年龄可能是一种比传统实际年龄更有用的附加指标,可用于识别有患上与年龄相关的疾病风险的个体 (Cole et al., 2019; Tian et al., 2023)。
选择一个系统并确定要分析的系统的系统边界之后,下一步就是识别系统和系统元素。识别系统和系统元素必须执行的阶段包括: 系统描述 在此系统描述中,将获得有关系统结构和系统如何工作的信息。 功能框图 该功能框图将系统元素显示为系统可分解成的功能块。了解系统如何交互以及系统如何与外部系统交互非常重要。 系统输入和输出:识别系统的输入和系统的输出。 系统工作分解结构 (SWBS) 此术语源自美国国防部的 RCM 应用,用于列出功能框图上显示的每个子系统功能的组件。
FECM 支持 – 正如本报告所述,FECM 的重点领域和技术组合与中西部的能源和工业结构、当地基础设施和资源高度契合。这些努力将帮助该地区吸引社区、创造新的就业机会、建立新的供应链,并投资支持大学和私营部门的研发和创新。此外,通过 DOE 的社区福利计划和社区福利协议,FECM 说明了项目的设计和范围如何最大限度地为该地区的社区带来经济、环境和社会效益,从而促进项目的成功和发展。
摘要 — 风电弃风 (WPC) 的发生是因为风力发电 (WPG) 与负荷之间不相关,而且 WPG 每小时内变化很快。最近,能源存储技术的进步促进了大容量能源存储单元 (ESU) 的使用,以提供应对 WPG 每小时内快速变化所需的提升。为了最大限度地降低每小时内 WPC 的概率,本文提出了一个通用的基于连续时间风险的模型,用于日前机组组合 (UC) 问题中发电单元和大容量 ESU 的每小时内调度。因此,伯恩斯坦多项式用于对具有 ESU 约束的基于连续时间风险的 UC 问题进行建模。此外,所提出的基于连续时间风险的模型可确保发电机组和 ESU 跟踪 WPG 每小时内的变化,同时在每个每小时内平衡负荷和发电量。最后,通过模拟 IEEE 24 节点可靠性和修改后的 IEEE 118 节点测试系统证明了所提模型的性能。
摘要:为提高热循环和随机振动条件下焊点疲劳可靠性,对板级可靠性(BLR)试验板的螺丝孔位置进行研究。建立BLR试验板的有限元模型,推导了热循环和随机振动条件下影响焊点疲劳寿命的主要参数塑性应变能密度和1-sigma应力。通过灵敏度分析,分析了螺丝孔位置与疲劳寿命主要参数之间的相关性。通过多目标优化,确定了热循环和随机振动条件下焊点疲劳寿命最大的螺丝孔位置。与初始螺丝孔位置的BLR试验板相比,优化螺丝孔位置后的BLR试验板在热循环和随机振动条件下的疲劳寿命明显提高。
苯是一种化学原料,在生产高能固液燃料和聚合物时被广泛使用,无可替代。因此,全球每年对苯的需求量达到 5100 万吨。利用 Peng-Robinson 状态方程性质包,过程模拟器已用于模拟通过甲苯加氢脱烷基化生产苯的反应器系统。该系统设计为每年生产 200,000 吨苯,并采用优化的热流机制。通过使用利用废热锅炉 (WHB-01) 和部分冷凝器 (PC-01) 的热流出口的热回收策略,通过将热流分别引导至加热器 H-01 和 H-02,总共节省了 -23,915,490.40 kJ/h,有效地降低了模拟中的净能量。考虑到这一策略,反应器系统内的改进工艺比基本工艺系统更加优化。版权所有 © 2024 作者,由 Universitas Diponegoro 和 BCREC Publishing Group 出版。这是一篇根据 CC BY-SA 许可开放获取的文章(https://creativecommons.org/licenses/by-sa/4.0)。关键词:苯;甲苯;加氢脱烷基化;模拟;净能量优化 引用方式:EI Maulana、A. Tarikh、RT Widaranti,(2024 年)。通过优化反应器系统中的传热单元,最大限度地降低加氢脱烷基化甲苯工艺生产苯的能耗。化学工程研究进展杂志,1 (2),97-107(doi:10.9767/jcerp.20167)永久链接/DOI:https://doi.org/10.9767/jcerp.20167
摘要:由于离线控制光伏 (PV) 电站不具备在线通信和远程控制系统,因此无法实时调节功率。因此,在离线控制光伏饱和的配电网中,配电系统运营商 (DSO) 应考虑可再生能源的不确定性来调度分布式能源 (DER),以防止因过压而导致的限电。本文提出了一种使用移动储能系统 (MESS) 和离线控制光伏的日前网络运行策略,以最大限度地减少功率削减。MESS 模型有效地考虑了 MESS 的运输时间和功率损耗,并模拟了各种操作模式,例如充电、放电、空闲和移动模式。优化问题基于混合整数线性规划 (MILP) 制定,考虑到 MESS 的空间和时间操作约束,并使用机会约束最优潮流 (CC-OPF) 执行。离线控制光伏的上限基于概率方法设定,从而减轻由于预测误差导致的过电压。所提出的运行策略在 IEEE 33 节点配电系统和 15 节点运输系统中进行了测试。测试结果证明了所提出方法在离线控制光伏系统中最小化限电的有效性。
从源头分离的尿液中回收资源可缩短地球上的营养循环,对深空探索的再生生命支持系统至关重要。在本研究中,开发了一种强大的两阶段、节能、不依赖重力的尿液处理系统,将新鲜真实的人类尿液转化为稳定的营养液。在第一阶段,在微生物电解池 (MEC) 中去除高达 85% 的 COD,将有机化合物中的部分能量 (27-46%) 转化为氢气,并通过防止第二阶段通过反硝化造成的氮损失实现完全氮回收。除了去除 COD 之外,所有尿素都在 MEC 中水解,从而产生富含氨氮和碱度、COD 低的流体。该流体被送入膜曝气生物膜反应器 (MABR),以通过硝化将挥发性和有毒的氨氮转化为非挥发性硝酸盐。生物电化学预处理允许在低于 0.1 mg O 2 L −1 的本体相溶解氧水平下将 MABR 中的所有氮以硝酸盐形式回收。相反,在相同的氮负荷率下向 MABR 直接供给原尿液(省略第一阶段)会因反硝化而导致氮损失(18%)。MEC 和 MABR 的特点是微生物群落非常不同且多样。虽然(严格的)厌氧属,例如 Geobacter(电活性细菌)、Thiopseudomonas(Lentimicrobiaceae 成员)、Alcaligenes 和 Proteiniphilum 在 MEC 中占主导地位,但 MABR 以需氧属为主,包括 Nitrosomonas(已知的铵氧化剂)、Moheibacter 和 Gordonia 。两阶段方法产生了稳定的富含硝酸盐、COD 低的营养液,适用于植物和微藻培养。