隐含的假设是,一个人(助手)是失败的根源,无论是由于某些固有特性还是由于他缺乏努力。贝塞尔摆脱了这一假设,并通过实证研究了天文观测中的个体差异。他发现,根据当时的方法,观察者之间存在很大差异。当时进行观察的技术需要结合听觉和视觉判断。这些判断是由当时的工具、摆钟和望远镜细线根据任务要求形成的。解雇金布鲁克并没有改变任务的困难之处,没有消除个体差异,也没有使任务不那么容易受到不精确因素的影响。进步的基础是寻找更好的天文观测方法、重新设计支持天文学家的工具以及重新设计任务以改变对人类判断的要求。
隐含的假设是,一个人(助手)是失败的根源,无论是由于某种固有特性还是由于他缺乏努力。贝塞尔摆脱了这一假设,并通过实证研究了天文观测中的个体差异。他发现,在当时的方法下,观察者之间存在很大差异。当时进行观察的技术需要结合听觉和视觉判断。这些判断受到当时的工具、摆钟和望远镜细线的影响,并与任务要求相关。解雇金布鲁克并没有改变任务的难度,并没有消除个体差异,也没有使任务更不容易受到不精确因素的影响。进步是基于寻找更好的天文观测方法、重新设计支持天文学家的工具以及重新设计任务以改变对人类判断的要求。
众所周知,地球上的一天有 24 小时。几千年来,人们一直通过天文观测来测量这一时间。然而,天文学家克里斯蒂安·惠更斯于 1655 年发明了第一台实用的摆钟,为我们提供了第一种在不使用望远镜的情况下以机械方式保持这一时间尺度的方法。到 19 世纪末,这些时钟的不断改进以及新的天文观测技术开始暗示地球自转并不是恒定的。1939 年,通过对太阳系物体的天文观测,地球自转速度的变化被清楚地确定下来。在 20 世纪 30 年代,新开发的石英钟被用来显示地球自转速度的明显年度变化。随后,1934 年至 1937 年三年期间摆钟的时间与地球自转之间的差异表格也被用来显示地球自转速度的年度变化。我们现在知道,大气变化导致的日长年变化小于±0.5毫秒/天。近代研究利用公元前720年至公元1600年古代和中世纪的日食记录以及1600年以来的月掩星记录,研究了地球自转速度的长期变化。化石记录表明,七千万年前,恐龙在白垩纪晚期的地质时期笨拙地行走,一天为23个半小时。再往前追溯,4.3亿年前的珊瑚化石表明志留纪的一天大约为21小时。我们现在知道,除了由于月球潮汐作用导致的地球自转长期减慢之外,地球还受到从十年到亚日的许多频率的变化的影响,这些变化有许多地球物理和气象原因。地球自转速度的变化导致了一天的长度变化。
(Cohen 等人,1971 年);演示了基于空间的甚长基线干涉测量 (VLBI),由此明确表明违反了逆康普顿极限并对中央发动机中发生的物理过程进行了约束(Levy 等人,1986 年、1989 年;Linfield 等人,1989 年);首次探测到恒星形成过程中的坠落和由内而外的坍缩过程(Velusamy、Kuiper 和 Langer,1995 年;Kuiper 等人,1996 年);通过在行星状星云 IC 418 中探测到 3 He + 的超细线,证明在恒星结构和银河系化学演化的理解方面仍然存在差距(所谓的“ 3 He 问题”)(Guzman-Ramirez 等人,2016 年)。 DSN 天线在建立和维护国际天体参考框架 (ICRF,Fey 等人,2015 年;Charlot 等人,2020 年) 的实现方面也发挥了不可或缺的作用。ICRF 不仅是用于指定所有天文源坐标的定义框架,它还作为参考,深空航天器的天空平面位置是根据该参考来确定的,用于导航 NASA 的深空任务。本文的重点是被动射电天文观测、太阳系以外的物体或太阳系外的天体,包括天文测量观测。太阳系天体的雷达天文观测超出了本文的范围,但 Dvorsky 等人 (1992 年)、Slade 等人 (2011 年) 和 Rodriguez-Alvarez 等人 (2021 年) 及其参考文献对此进行了描述。出于类似的精神,本文不描述 DSN 天线的传输能力。这些材料中的大部分也在 DSN 的《电信接口》(2019 年)中的一系列文件中介绍过,这些文件俗称 810-005(其中模块 101、104 和 211 与射电天文观测最相关),但这里采用的是一种更适用于射电天文观测的方式。
背景。下一代望远镜的选址是在望远镜首次发射前的几十年选定的。选址通常基于近期的测量结果,但该测量结果太短,无法解释观测条件的长期变化,例如由人为气候变化引起的变化。因此,对于典型寿命为 30 年的天文设施,了解气候演变以优化观测时间至关重要。目标。在本研究中,我们分析了八个站点的天文观测条件趋势。大多数站点要么已经拥有提供现场天气参数测量的望远镜,要么是下一代望远镜的候选地。为了精细地表示地形,我们使用高分辨率模型比对项目提供的最高分辨率全球气候模型 (GCM) 集合,该集合是欧盟“地平线 2020 PRIMAVERA”项目的一部分。方法。我们评估了仅大气和耦合的 PRIMAVERA GCM 历史模拟,并与现场测量和欧洲中期天气预报中心 1979-2014 年期间的第五代大气再分析 (ERA5) 进行了比较。然后使用 PRIMAVERA 未来气候模拟分析 2015-2050 年期间当前场地条件变化的预测。结果。在大多数站点,我们发现 PRIMAVERA GCM 在温度、比湿和可降水蒸气方面与现场观测和 ERA5 相比具有良好的一致性。PRIMAVERA 模拟这些变量的能力提高了对其预测的信心。对于这些变量,模型集合预测所有站点都呈上升趋势,这将导致天文观测条件与当前条件相比逐渐变差。另一方面,预测相对湿度、云量或天文观测没有显著趋势,与观测和重新分析相比,PRIMAVERA 不能很好地模拟这些变量。因此,这些预测的信心不大。结论。我们的研究结果表明,气候变化将对天文观测的质量产生负面影响,并可能增加因场地条件恶劣而造成的时间损失。我们强调,天文学家在选址和监测过程中必须纳入长期气候预测。我们表明高分辨率 GCM 可用于分析气候变化对下一代望远镜场地特征的影响。
随着 2019 年 5 月首批 60 颗 Starlink 卫星发射,天文学家敏锐地意识到了卫星星座的影响。在短短五年内,一些公司已将近 7,000 颗星座卫星发射到地球轨道上——几乎与 65 年前航天时代开启以来发射的单颗卫星数量一样多。低地球轨道 (LEO) 卫星星座的激增对那些珍视黑暗和宁静天空的人来说构成了重大风险。这些卫星可能会将阳光反射到光学望远镜上,改变夜空的外观,并发射从无线电到红外线的电磁辐射,可能对天文观测造成有害干扰。低地球轨道上的地面和太空望远镜都会受到影响。地球上没有一个地方能够免受这些全球卫星星座的影响,监管文件表明,未来几年公司和政府可能会发射更多卫星。
空间技术,尤其是卫星,是人类发展和进步的重要工具。卫星用于地球观测、通信、导航、大气研究、天文观测和军事应用。与类似应用的传统方法相比,卫星即使在偏远地区也能以更低的成本提供不间断的服务。随着对空间技术优势的认识不断提高,许多国家正在将空间能力纳入其国家发展计划。成本的增加、复杂的技术、高制造技能和持续服务要求限制了卫星的制造和发射,只有少数国家或机构可以制造和发射卫星。另一方面,电子小型化革命、智能材料的发明减少了卫星的尺寸和质量。此外,计算能力、高容量存储设备、成像和传感器技术、控制智能和机载自动化的改进为设计和制造更小、更快、更便宜的复杂“小型”卫星提供了机会。
低地球轨道 (LEO) 卫星数量的不断增加增强了全球通信和地球观测,支持太空商业是许多政府的首要任务。与此同时,低地球轨道卫星数量的激增对天文观测和研究以及暗夜静谧天空的保护产生了负面影响。这些卫星将阳光反射到光学望远镜上,其无线电发射影响射电天文台,危及我们通过天文学获得重要科学发现的机会。天空外观的变化也影响着我们的文化遗产和环境。地面天文台和低地球轨道上的太空望远镜都受到影响,由于卫星星座的全球性,地球上没有任何地方可以逃脱其影响。受干扰最小的暗夜静谧天空 1 对于开展天文学基础研究以及行星防御、技术开发和高精度地理定位等重要公共服务至关重要。
我们提供了经验证据,表明在某些标准问题上,我们的方法比传统的建设性回溯方法效率高得多。例如,在 n 皇后问题上,我们的方法可以快速找到一百万皇后问题的解[28]。我们认为基于修复的方法之所以能够胜过建设性方法,是因为完整分配在指导搜索方面比部分分配更具信息性。但是,额外信息的效用取决于领域。为了帮助阐明这种潜在优势的性质,我们提出了一个理论分析,描述了各种问题特征如何影响该方法的性能。例如,该分析显示了当前分配和解决方案之间的“距离”(就所需的最少修复次数而言)如何影响启发式的预期效用。本文描述的工作受到 Adorf 和 Johnston [2, 22] 开发的一种令人惊讶的有效神经网络的启发,该网络用于安排哈勃太空望远镜的天文观测。