交互式控制台提供以下功能:• 主机生成和控制控制台字母数字• 雷达系统状态、测试和校准• 将笛卡尔坐标中的输出数据平滑到二阶• 子系统维护诊断• 对安装异常进行补偿;非正交性、下垂、射频倾斜和失平• 角度伺服输入由主机开发或处理• 重新定位后系统重新配置和校准最少• 自动任务前设置和校准• 能够支持远程操作
摘要背景:阐明脑缺血再灌注损伤 (CIRI) 的发病机制和开发新的有效疗法至关重要。丁香脂素 (Syr) 是一种存在于各种药草中的呋喃木脂素,可能在治疗 CIRI 中发挥重要作用。本研究旨在研究 Syr 对 CIRI 进展的影响并揭示其中的潜在机制。方法:建立了一种大脑中动脉闭塞 (MCAO) 小鼠模型来研究 CIRI。给小鼠施用浓度为 20 mg/kg 和 40 mg/kg 的 Syr,持续 48 小时。使用 2,3,5-三苯基四唑氯化物 (TTC) 测定法评估 Syr 对小鼠脑梗死的影响。采用免疫染色法检测离子化钙结合衔接分子 1 (Iba1) 和胶质纤维酸性蛋白 (GFAP),采用酶联免疫吸附试验 (ELISA) 检测白细胞介素 (IL)-1 β、肿瘤坏死因子 (TNF)- α、IL-10 和 IL-6 的水平。此外,还进行了末端脱氧核苷酸转移酶 (TdT) 介导的 2′-脱氧尿苷 5′-三磷酸 (dUTP) 缺口末端标记 (TUNEL) 试验,以评估对大脑中动脉闭塞模型 (MCAO) 小鼠脑组织中脑胶质细胞活化、炎症和细胞凋亡的影响。进一步进行免疫印迹以验证其作用机制。结果:Syr 可减轻 MCAO 小鼠的脑梗死。此外,它还降低了这些模型中脑神经胶质细胞的激活。我们的研究结果进一步表明,Syr 可减少 MCAO 小鼠脑组织内的炎症。它还抑制这些组织中的细胞凋亡。从机制上讲,Syr 抑制核因子 κB (NF- κ B) 通路,从而缓解 CIRI。结论:总之,Syr 通过阻断神经胶质细胞激活和抑制炎症反应来缓解 CIRI。
基于硫代构化相位变化材料(PCM)的光子记忆细胞的实现引起了人们的关注,因为它们的快速,可逆和非易失性编程功能。[1]在硅光子平台上整合PCM存储器单元,例如GE 2 SB 2 TE 5(GST)和Aginsbte(AIST),[2] [2]可以使全观内存处理,并在其电子交通方面具有显着的优势,并在带状,速度,速度,速度,速度,速度,速度,速度,速度和并行处理中。[3,4]在开发光学逻辑门,[5,6]可恢复可填充的Photonic电路,[7-9]电气控制的光子记忆细胞,[10,11]等离激源性波导开关,[12,13] Neuro-neuro启发的光子Synapes,[14]和Neural Net-Net-net-net-net-net-net-net-net-net-net-net-net-Net-net-net-net-Net-net-net-Net-net-net-net-Ner ner Net-net-net-nerter Worts中。[15,16]先前的研究系统地研究了光子记忆细胞对二硝基二硝酸盐仪(SI 3 N 4)和硅启用器(SOI)平台的性能,[17,18],在这些平台上,从基线(完全结晶的状态)观察到了单调增加的透射率,该传播是作为拟合程序的拟合功率。这个完善的单调光学编程使可变的可变性能够归因于Hebbian学习的基本生物神经突触的峰值依赖性可塑性(STDP)。[14]值得注意的是,最近在各种光电平台上开发了人工突触,例如[19],基于Chalcogenide玻璃波波[20]和H-BN/WSE 2异质结构。[21]在STDP中,神经元之间的连接强度,即突触重量或突触效率,根据神经元的输出和输入尖峰的相对时机进行调整。[22]突触可塑性的基本公式,即突触重量的变化可以表示为δw¼f(δt),其中δt p p p pre,t pre,t post和t pre分别是后和神经前的时间。δT<0带有δW<0和δT> 0引入长期抑郁(LTD),并带有δW> 0的长期增强(LTP)。
摘要 在空间和时间上调节基因活性的能力对于研究发育过程中以及胚胎后过程和疾病模型中的细胞类型特异性基因功能至关重要。Cre/lox 系统已广泛用于对斑马鱼的基因功能进行细胞和组织特异性条件分析。然而,缺乏简单有效的分离稳定的 Cre/lox 调控斑马鱼等位基因的方法。在这里,我们应用了我们的 GeneWeld CRISPR-Cas9 靶向整合策略来生成可提供强大条件失活和拯救的 floxed 等位基因。通用靶向载体 UFlip 具有用于克隆位于 floxed 2A-mRFP 基因陷阱两侧的短同源臂的位点,被整合到 rbbp4 和 rb1 的内含子中。 rbbp4 off 和 rb1 off 整合等位基因导致强烈的 mRFP 表达、内源基因表达减少 99% 以上,并重现已知的 indel 功能丧失表型。Cre 的引入导致 floxed 盒的稳定倒位、mRFP 表达的丧失和表型挽救。rbbp4 on 和 rb1 on 整合等位基因与功能丧失突变相结合不会引起表型。Cre 的添加通过盒的稳定倒位、基因捕获和 mRFP 表达以及预期的突变表型导致条件性失活。神经祖细胞 Cre 驱动器用于条件性失活和表型拯救,以展示如何在特定细胞群中使用这种方法。这些结果共同验证了一种在斑马鱼中有效分离 Cre/lox 反应条件等位基因的简化方法。我们的策略为生成基因嵌合体提供了一种新的工具包,并代表了斑马鱼遗传学的重大进步。
1 美国佛罗里达大学医学院分子遗传学与微生物学系;2 美国佛罗里达大学健康癌症中心;3 美国佛罗里达大学医学院生物化学与分子生物学系;4 美国佛罗里达大学遗传学研究所;5 中国广州中山大学中山眼科中心国家眼科学重点实验室;6 中国海宁浙江大学医学院国际校区浙江大学-爱丁堡大学研究所(ZJU-UoE Institute);7 美国三角研究园国家环境健康科学研究所(NIEHS)生殖与发育生物学实验室;8 美国佛罗里达大学医学院医学系
摘要 逆转座子是一类可移动的遗传元件,能够通过逆转录 RNA 中间体进行转座。水稻品种日本晴在第 7 号染色体上(Tos17 Chr.7)和第 10 号染色体上(Tos17 Chr.10)含有两个几乎相同的 Tos17 基因组拷贝,Tos17 是一个内源的 copia 样 LTR 逆转座子。前期研究表明,在组织培养过程中,只有 Tos17 Chr.7 具有转座活性。Tos17 Chr.7 已被广泛用于插入诱变,作为水稻基因功能分析的工具。然而,在水稻转化过程中,Tos17 Chr.7 转座可能会产生具有不良性状的体细胞突变,从而影响转基因的评估或应用。本研究利用 CRISPR/Cas9 基因编辑系统构建了一个 Tos17 Chr.7 敲除突变体 D873。 Tos17 Chr.7 在D873上的基因编辑等位基因被命名为Tos17 D873 ,该基因在Tos17 Chr.7的pol基因上有一个873bp的DNA缺失,从而导致GAG-整合酶前结构域和整合酶核心结构域的缺失。虽然Tos17 D873的转录在D873愈伤组织中被激活,但在再生的D873植株中没有检测到Tos17 D873的转座。结果表明GAG-整合酶前结构域和整合酶核心结构域是Tos17 Chr.7转座所必需的,且这两个结构域的缺失不能被水稻基因组中的其他LTR逆转录转座子补充。由于 Tos17 Chr.7 衍生的体细胞克隆诱变在 D873 植物中被阻断,因此 Tos17 D873 等位基因的产生将有助于生产转基因水稻植物,以进行基因功能研究和遗传工程。类似的方法可用于在作物育种中失活其他逆转录转座子。
成纤维细胞生长因子受体(FGFR)信号传导在乳腺胚胎发育,组织稳态,肿瘤发生和转移中起关键作用。fgfr,其众多的FGF配体和信号伴侣在乳腺癌的进展中常常失调,并且是乳腺癌治疗耐药的原因之一。此外,上皮细胞上的FGFR信号受到乳房微环境信号的影响,因此增加了乳房发育异常或癌症进展的可能性。我们对复杂的FGFR家族,配体FGF及其调节伙伴的多层作用的了解可能会为乳腺癌患者提供新颖的治疗策略,作为单个药物或理性的共同靶向,这将在本综述中深入探讨。
放大器将以等于正电源的共模输入电压工作。然而,在此条件下,增益带宽和斜率可能会降低。当负共模电压摆动至负电源的 3V 以内时,可能会出现输入失调电压增加的情况。LF411 由齐纳参考偏置,允许在 g 4�5V 电源上正常电路工作。低于这些的电源电压可能会导致较低的增益带宽和斜率。LF411 将在整个温度范围内驱动 2k X 负载电阻至 g 10V。如果放大器被迫驱动更大的负载电流,但是,在负电压摆动上可能会出现输入失调电压增加,并最终在正向和负向摆动上达到有效电流限制。应采取预防措施,确保集成电路的电源永远不会反转极性,或者不会无意中将设备反向安装到插座中,因为无限电流通过 IC 内部产生的正向二极管产生的浪涌可能会导致内部导体熔断,从而导致设备损坏。
[6] C. Guo, J. Xu, D. Rocca 和 Y. Ping, Phys. Rev. B 102, 205113, (2020)。[7] F. Wu, D. Rocca 和 Y. Ping, J. Mater. Chem. C, 7, 12891 (2019)。[8] F. Wu, TJ Smart 和 Y. Ping, Phys. Rev. B, 100, 081407(R) (2019)。[9] Y. Ping 和 TJ Smart, Nat. Comput. Sci., 1, 646, (2021) [10] K. Li, TJ Smart, Y. Ping, Phys. Rev. Mater (Letter), 6, L042201, (2022) [11] S. Zhang, K. Li, C. Guo, 和 Y. Ping, 2D Materials, 正在印刷, (2023) arxiv.org/abs/2304.05612
摘要:在航空航天环境中,芯片的高可靠性和低功耗至关重要。为了大幅降低功耗,芯片的锁存器需要进入掉电操作。在此操作中,采用非易失性(NV)锁存器可以保留电路状态。此外,在航空航天环境中,锁存器可能会被辐射粒子击中,在最坏的情况下会导致严重的软错误。本文提出了一种基于电阻式随机存取存储器(ReRAM)的NV锁存器,用于NV和鲁棒应用。所提出的NV锁存器具有低开销的抗辐射能力,并且可以在掉电操作后恢复值。仿真结果表明,所提出的NV锁存器可以完全提供针对单粒子翻转(SEU)的抗辐射能力,并可以在掉电操作后恢复值。与其他类似解决方案相比,所提出的NV锁存器可以将存储单元中的晶体管数量平均减少50%。