简介1。该主题的紧迫性城市农业越来越关注越南的许多大城市,从而创造了发展条件。有限的地区,城市中的农业通常与现代技术和技术有关,以高产,有机农业方法,从而为当今的现代城市带来了许多好处。以及该市农业的发展是农业发展服务部门的出现(AD)。如果政府促进,从初创企业,生产到加工,保存,品牌,产品推广和销售的全方位服务,城市农业将非常强烈地发展,在城市的可持续发展中发挥重要作用,尤其是在大型人口的大城市中。因此,对于农业服务行业来说,不仅有必要组织起来,以提高该行业本身的业务效率,而且更重要的是,有必要具有凝聚力,以提高沿现代方向的城市农业的效率和可持续发展。这是一个需要从理论上研究的问题,以便拥有促进城市中农业发展服务的方法和模型,以使世界上许多国家为世界各地构成姿势。为了发展现代城市农业,该市还确定有必要补充许多政策,建立服务系统来支持同步农业领域的经济发展,同时建立农业中的联系和供应链。有了正确的政策,该市的农业产业逐渐朝着现代城市农业的方向发展,劳动力生产力,并且每01公顷的平均生产价值都很高。Cu Chi District有一个农业高科技公园,位于12区的生物技术中心以及Binh Chanh区的高科技奶牛场示范和实验农场,最初一直在有效运作。尽管最初取得了成就,但胡志明市的农业发展仍然有许多局限性。尤其是,农业发展的服务并未真正发展,也没有为生产和商业实体提供最佳支持。高质量牲畜品种和农作物的服务尚未按预期开发,也没有取代进口品种。
1-1 印第安纳州运营中的大型太阳能发电场 ...................................................................................... 10 1-2 印第安纳州在建的公用事业规模光伏项目 ........................................................................ 10 1-3 印第安纳州已批准但尚未开工的公用事业规模光伏项目 ................................................ 11 2-1 风能资源分类 ............................................................................................................. 22 2-2 美国风电排名:前 25 个州 ............................................................................................. 33 2-3 海上风电容量目标和要求 ............................................................................................. 35 2-4 印第安纳州风电场; 2-5 印第安纳州公用事业公司签订的风能购买协议 ...................................................................... 38 2-6 印第安纳州风电场签订的风能虚拟购买协议 ...................................................................... 39 3-1 综合生物炼制项目 ...................................................................................................... 53 3-2 商业化综合生物炼制项目 ............................................................................................. 54 3-3 印第安纳州的乙醇工厂 ...................................................................................................... 58 3-4 印第安纳州生产柳枝稷的平均农场交货成本(美元/吨) ............................................. 62 3-5 野猫溪流域生产玉米秸秆、柳枝稷和芒草的类别成本 ............................................................................................................................................. 63 4-1 根据 2016 年十亿吨研究基准假设,按特定价格和年份对二次农业废弃物潜力的总结 ............................................................................................................. 73 4-2 美国 75 个城市固体废弃物能源工厂的位置 ............................................................................................................. 76 4-3 发电潜力最大的十大州来自养猪场和奶牛场的碳足迹...................................................................................... 78 4-4 美国废水处理热电联产系统...................................................................................... 79 4-5 印第安纳州垃圾填埋场的发电厂...................................................................................... 81 4-6 沃巴什谷电力协会垃圾填埋场电力项目.................................................................... 81 4-7 印第安纳州垃圾填埋场的潜在发电能力.................................................................................... 82 4-8 印第安纳州运行中的厌氧消化器.................................................................................................... 83 4-9 印第安纳州浓缩动物饲养场的潜在发电能力.................................................................... 84 4-10 印第安纳州污水处理厂的潜在发电能力…….................................................................. 85 5-1 美国 CSP 电厂的预计资本成本............................................................................................................................................. 97 5-2 美国正在运营的聚光太阳能发电厂 .............................................................. 101 5-3 美国已不再运营的聚光太阳能发电厂 .............................................. 102 5-4 美国境外在建的聚光太阳能发电厂 ................................................ 103
他原本来自明尼苏达州的一个奶牛场,并于 2004 年加入海军。在佛罗里达州彭萨科拉完成“A”学校的学习后,PRCS Moen 到弗吉尼亚州的 NAS Oceana Sea 作战支队报到。2008 年 3 月,他就读于佐治亚州本宁堡的美国陆军空降学校,随后又进入弗吉尼亚州格雷格-亚当斯堡的 SOPR 学校学习。完成两门课程后,他被分配到海军特种作战大队第二后勤和支援部队工作四年。在此期间,PRCS Moen 参加了军事自由落体、静态线跳伞长、直升机绳索悬挂技术/投掷 (HRST/C) 大师和联合空投督察学校。他还获得了远征作战专家和联邦航空管理局 (FAA) 高级降落伞装配工的资格。2011 年,PRCS Moen 与海豹突击队第十小队一起部署,支援持久自由行动。部署结束后,他调至弗吉尼亚州小溪高级训练指挥支队。2012 年至 2015 年,他担任教员,为东海岸的海豹突击队教授静态线跳伞长和 HRST/C 长,同时获得了大师级训练专家称号。2015 年 2 月,PRCS Moen 被分配到夏威夷珍珠城海军特种作战大队第三后勤和支援部队,在那里他担任 FAA 索具大师、海军跳伞大师 (NEC 9554)、海军特种作战作战支援 (NEC 5307) 和海军特种作战大队第三内的空中作战训练师/考官。2018 年 5 月,PRCS Moen 报告为田纳西州米灵顿的 PERS 4010 特别项目细节制定者。他接下来的任务是登上日本横须贺的 CVN 76,在那里他三次部署在飞机中级维护部门任职。 2023 年 12 月,他加入海军安全司令部,并将驻扎在这里至 2027 年 1 月。
《巴黎协定》邀请其签署国制定长期战略,以便到2050年。许多国家已经发布并实施了旨在逐步最小化温室气体(GHG)排放并在2050年达到零净排放的策略。可以通过结合不同的措施来达到这一点,例如减少化石资源消耗,增加替代投入的使用,永久性碳去除或碳抵消措施。遵循巴黎协议后,许多公司已开始实施长期战略和措施,以尽快将其业务,流程和产品脱碳,同时确保长期经济成功。碳足迹是将粮食生产的气候变化影响传达给利益相关者的越来越重要的方法1。此外,碳足迹的方法可以支持全世界的乳制品供应链,以降低温室气体排放的承诺,以满足巴黎协议2的目标2诸如基于科学的目标计划(SBTI)3,在科学目标设置中定义和促进碳纤维底漆和零件零件的最佳实践。ISCC - 国际可持续性和碳认证(ISCC)是一种认证系统,除非提供实施脱碳措施的解决方案。对于减少温室气体排放的过程或产品碳足迹(PCFS)的产品的认证,GHG排放或PCF的可比较且可重复的计算很重要。该模块是一个起点,旨在为食品和农业领域内的不同过程和产品开发“ ISCC碳足迹认证”,系统用户可能会使用该行业内的温室气体排放。到目前为止,产品的选择包括使用传统农业实践的“家庭奶牛场”(FDF)的碳足迹认证,以照顾环境和农村景观。在可能的情况下,ISCC旨在将ISCC碳足迹认证与既定规范和标准进行协调,例如ISO 14040/44,ISO 14067,IPCC指南或温室气体协议。但是,由于这些规范并不总是针对单个过程显示详细的法规,并且留出了解释的空间,因此ISCC将为已开发的
公元前五世纪(B.C.430),雅典的修昔底德首先提到了他称为“瘟疫”的感染的免疫力(但不可能的鼠疫)。,但由于中国古代习俗保护儿童免受小痘的态度,免疫力的概念是通过使他们从从小痘病中恢复的患者的皮肤病变中制备的粉末来吸入粉末。到十二世纪,中国人观察到,从小痘中恢复过来的个体对进一步的攻击具有抵抗力,他们通过对皮肤进行小割伤并摩擦从感染者那里收集的ap来故意感染婴儿。 孩子们从感染中幸存下来,并在生命后期受到保护。 稍后,他们采用了一种从最轻微的小痘(Variolation)中收集的结ab的儿童的方法,而由于小痘的发病率从20%下降到1%。 这一消息在18世纪初传播到欧洲,很快就广泛使用。 在18世纪,欧洲因rinderpest(牛瘟疫)引起的牛死亡很普遍,并浸泡了一条绳子,并从rinderpest受影响的动物中鼻腔排出,并通过在易感动物中切开切口来插入脱水,从而降低了发生率。 在1774年,农民本杰明·杰斯(Benjamin Jesty)用离号病毒接种了妻子,以保护她免受小痘的侵害。 在1798年,爱德华·詹纳(Edward Jenner)(1749-1823)在一名奶牛场的建议接种后接种了一个八岁男孩,该男孩从牛波克中收集了泡沫,并保护了他免受严重的小痘的侵害。 接种绵羊没有死。到十二世纪,中国人观察到,从小痘中恢复过来的个体对进一步的攻击具有抵抗力,他们通过对皮肤进行小割伤并摩擦从感染者那里收集的ap来故意感染婴儿。孩子们从感染中幸存下来,并在生命后期受到保护。稍后,他们采用了一种从最轻微的小痘(Variolation)中收集的结ab的儿童的方法,而由于小痘的发病率从20%下降到1%。这一消息在18世纪初传播到欧洲,很快就广泛使用。在18世纪,欧洲因rinderpest(牛瘟疫)引起的牛死亡很普遍,并浸泡了一条绳子,并从rinderpest受影响的动物中鼻腔排出,并通过在易感动物中切开切口来插入脱水,从而降低了发生率。 在1774年,农民本杰明·杰斯(Benjamin Jesty)用离号病毒接种了妻子,以保护她免受小痘的侵害。 在1798年,爱德华·詹纳(Edward Jenner)(1749-1823)在一名奶牛场的建议接种后接种了一个八岁男孩,该男孩从牛波克中收集了泡沫,并保护了他免受严重的小痘的侵害。 接种绵羊没有死。在18世纪,欧洲因rinderpest(牛瘟疫)引起的牛死亡很普遍,并浸泡了一条绳子,并从rinderpest受影响的动物中鼻腔排出,并通过在易感动物中切开切口来插入脱水,从而降低了发生率。在1774年,农民本杰明·杰斯(Benjamin Jesty)用离号病毒接种了妻子,以保护她免受小痘的侵害。在1798年,爱德华·詹纳(Edward Jenner)(1749-1823)在一名奶牛场的建议接种后接种了一个八岁男孩,该男孩从牛波克中收集了泡沫,并保护了他免受严重的小痘的侵害。 接种绵羊没有死。在1798年,爱德华·詹纳(Edward Jenner)(1749-1823)在一名奶牛场的建议接种后接种了一个八岁男孩,该男孩从牛波克中收集了泡沫,并保护了他免受严重的小痘的侵害。接种绵羊没有死。该技术称为疫苗接种(VACCA表示拉丁牛),并广泛用于消除来自世界的小痘。他被认为是免疫学的父亲。直到1879年,法国路易斯·巴斯德(Louis Pasteur,1822 - 1895年)才使用现在称为Multocida的巴斯德拉氏菌的细菌时,才意识到詹纳的观察概念。 一旦他的助手不小心将这种生物的文化留在了实验室长凳上,然后去了暑假。 当他返回并感染鸡时,它们没有死。 巴斯德准备了新鲜的培养物并感染了同样的鸡,但在他惊讶的是,他看到鸟类抵抗感染。 巴斯德意识到,这类似于使用牛波克对小痘的疫苗接种的原则。 在疫苗接种中,动物暴露于毒性较低或无毒的有机体不会引起疾病,而是会产生免疫力,并防止对具有相同类型或密切相关生物体的强大生物体发作。 pasteur将此技术应用于炭疽病。 他通过在异常的高温下种植炭疽杆菌的芽孢杆菌。 在1881年,他首先用无毒的炭疽杆菌接种了一群绵羊,并邀请人们看着他用肉芽芽孢杆菌的强烈文化向绵羊挑战。 Pasteur控制疾病的奇迹广泛传播。 由于狂犬病是一个燃烧的问题,因此他被要求准备疫苗。 他从狂犬病狗中收集唾液,并将其接种成兔子。 当兔子死亡时,他收集了大脑和脊髓,干燥并制成粉末。 在中直到1879年,法国路易斯·巴斯德(Louis Pasteur,1822 - 1895年)才使用现在称为Multocida的巴斯德拉氏菌的细菌时,才意识到詹纳的观察概念。一旦他的助手不小心将这种生物的文化留在了实验室长凳上,然后去了暑假。当他返回并感染鸡时,它们没有死。巴斯德准备了新鲜的培养物并感染了同样的鸡,但在他惊讶的是,他看到鸟类抵抗感染。巴斯德意识到,这类似于使用牛波克对小痘的疫苗接种的原则。在疫苗接种中,动物暴露于毒性较低或无毒的有机体不会引起疾病,而是会产生免疫力,并防止对具有相同类型或密切相关生物体的强大生物体发作。 pasteur将此技术应用于炭疽病。 他通过在异常的高温下种植炭疽杆菌的芽孢杆菌。 在1881年,他首先用无毒的炭疽杆菌接种了一群绵羊,并邀请人们看着他用肉芽芽孢杆菌的强烈文化向绵羊挑战。 Pasteur控制疾病的奇迹广泛传播。 由于狂犬病是一个燃烧的问题,因此他被要求准备疫苗。 他从狂犬病狗中收集唾液,并将其接种成兔子。 当兔子死亡时,他收集了大脑和脊髓,干燥并制成粉末。 在中在疫苗接种中,动物暴露于毒性较低或无毒的有机体不会引起疾病,而是会产生免疫力,并防止对具有相同类型或密切相关生物体的强大生物体发作。pasteur将此技术应用于炭疽病。他通过在异常的高温下种植炭疽杆菌的芽孢杆菌。在1881年,他首先用无毒的炭疽杆菌接种了一群绵羊,并邀请人们看着他用肉芽芽孢杆菌的强烈文化向绵羊挑战。Pasteur控制疾病的奇迹广泛传播。由于狂犬病是一个燃烧的问题,因此他被要求准备疫苗。他从狂犬病狗中收集唾液,并将其接种成兔子。当兔子死亡时,他收集了大脑和脊髓,干燥并制成粉末。在将粉末与液体混合并送给狗。接种的狗没有狂犬病。1885年,巴斯德对约瑟夫·迈斯特(Joseph Meister)进行了第一次疫苗,他是一个小男孩,被一只狂热的狼咬伤。他可以观察到这个男孩没有狂犬病。然后他治疗了几名患者。巴斯德在巴黎建立了巴斯德研究所。于1885年7月6日进行了巴斯德狂犬病疫苗的第一次人类试验。这一天被视为人畜共患病日。在美国的同一时间,鲑鱼表现出死亡生物也可以用作疫苗。 他表明,据信引起猪霍乱的芽孢杆菌的热量杀死芽孢杆菌的培养物(现在的名称沙门氏菌霍乱)可以保护鸽子免受该生物体引起的疾病。 1888年P.P. 巴黎研究所的 Emile Roux和Alexander Yersin在白喉芽孢杆菌的培养物滤液中表现出细菌毒素,并描述了对这种毒素的免疫或抗毒素。在美国的同一时间,鲑鱼表现出死亡生物也可以用作疫苗。他表明,据信引起猪霍乱的芽孢杆菌的热量杀死芽孢杆菌的培养物(现在的名称沙门氏菌霍乱)可以保护鸽子免受该生物体引起的疾病。1888年P.P.Emile Roux和Alexander Yersin在白喉芽孢杆菌的培养物滤液中表现出细菌毒素,并描述了对这种毒素的免疫或抗毒素。
沙特阿拉伯大约 70% 的消费需求依赖进口食品和农产品。奶牛场和家禽场完全依赖主要植物生物技术生产国生产的饲料玉米、豆粕和大豆。2001 年,沙特阿拉伯正式允许进口转基因植物产品和微生物食品,但必须满足两个条件:产品在原产国获准供人类或动物食用,且如果转基因含量高于 1%,则产品必须贴有生物技术标签。2011 年,海湾标准化组织 (GSO) 发布了两项主要生物技术法规,即 GSO 2141/2011(转基因未加工农产品通用要求)和 GSO 2142/2011(转基因加工农产品通用要求)。自 2011 年以来,他们一直没有修订植物生物技术法规,预计近期也不会有任何变化。这两项生物技术法规在 GSO 成员国(沙特阿拉伯、巴林、科威特、阿曼、卡塔尔、也门和阿联酋)实施。这两项 GSO 法规包含与沙特阿拉伯自 2001 年以来一直在实施的生物技术标签条件类似的条件。美国历来是沙特阿拉伯王国玉米、玉米油、干酒糟及可溶物 (DDGS)、大豆、豆粕和大豆油的重要供应国。2023 年,沙特阿拉伯进口了 273 万公吨 (MMT) 饲料玉米(13% 来自美国);38,614 公吨 DDGS(全部来自美国);52,858 公吨玉米油(59% 来自美国);518,365 公吨大豆(29% 来自美国);803,075 公吨豆粕(美国市场份额为 9%);以及 12,671 公吨大豆油(10% 来自美国)。尽管沙特阿拉伯已出台允许进口生物技术种子的法规,但沙特农民并未表现出进口或种植生物技术种子的兴趣。沙特阿拉伯没有单独的微生物生物技术政策,它将微生物生物技术视为农业生物技术的重要组成部分。因此,所有适用于农业生物技术生产和消费的法规和标准都适用于使用微生物生物技术生产的产品。沙特阿拉伯和 GSO 成员国允许进口转基因种子,但出于宗教原因(清真问题),禁止所有成员国进口转基因动物、鸟类、鱼类及其产品。目前,尚未就撤销禁令进行讨论。有关沙特阿拉伯食品和农业进口法规的更多详细信息,可参阅我们的年度食品和农业进口法规和标准 (FAIRS) 国家报告,链接如下。
1-1 印第安纳州光伏总装机容量 ................................................................................................ 9 1-2 净计量下签约的可再生能源发电容量 ........................................................................ 10 1-3 上网电价下签约的可再生能源发电容量 ................................................................ 10 1-4 印第安纳州在建的公用事业规模光伏项目 ...................................................................... 11 1-5 印第安纳州已批准但尚未开工的公用事业规模光伏项目 ...................................................... 11 1-6 正在等待 IURC 批准的公用事业规模光伏项目 ............................................................. 12 2-1 风能资源分类 ............................................................................................................. 22 2-2 美国风电排名:前 25 个州 ............................................................................................. 33 2-3 东海岸各州的海上风电容量目标 ............................................................................. 35 2-4 印第安纳州风电场; 2-5 印第安纳州公用事业公司签订的风能购买协议 ...................................................................... 38 2-6 印第安纳州风电场签订的风能虚拟购买协议 ...................................................................... 39 3-1 综合生物炼制项目 ...................................................................................................... 53 3-2 商业化综合生物炼制项目 ............................................................................................. 53 3-3 印第安纳州的乙醇工厂 ...................................................................................................... 57 3-4 印第安纳州生产柳枝稷的平均农场交货成本(美元/吨) ............................................. 62 3-5 野猫溪流域生产玉米秸秆、柳枝稷和芒草的类别成本 ............................................................................................................................. 62 4-1 根据 2016 年十亿吨研究基准假设,按特定价格和年份对二次农业废弃物潜力的总结 ............................................................................................................................. 73 4-2 美国 75 个城市固体废物能源工厂的位置 ............................................................................................................. 76 4-3 发电潜力最大的十大州来自养猪场和奶牛场的垃圾焚烧发电厂..................................... 78 4-4 美国废水处理热电联产系统..................................................... 79 4-5 印第安纳州垃圾填埋场的发电厂........................................................ 81 4-6 沃巴什谷电力协会垃圾填埋场电力项目........................................................ 81 4-7 印第安纳州垃圾填埋场的潜在发电能力..................................................... 82 4-8 印第安纳州运行中的厌氧消化器.....................................................................4-9 印第安纳州集中动物饲养场的潜在发电能力......................................................................................................................... 84 4-10 印第安纳州污水处理厂的潜在发电能力...................................................................................................... 85 5-1 美国 CSP 电厂的预计资本成本......................................................................................................................... 97 5-2 美国正在运营的聚光太阳能发电厂.................................................................................................... 101 5-3 美国已不再运营的聚光太阳能发电厂.................................................................................................... 102
n这个特别版的Evergreen,我们参观了新泽西州的传说中的松树桶,这是我从未去过的美国唯一森林的州。令我非常惊讶的是,我看到了我已经出版杂志的近40年来看到的一些最好的林业,所有这些都是由鲍勃·威廉姆斯(Bob Williams)提供的,鲍勃·威廉姆斯(Bob Williams)是新泽西州的本地人,也是该州最受尊敬的森林人。我的艾伯逊祖母于1894年出生于纽瓦克,该州的大型城市,最新的人口普查中的人口为304,960。她记得从家里走到悠久的奶牛场。今天,有10,841,764人居住在纽瓦克17英里以内。,但是从曼哈顿到纽瓦克需要一个多小时的时间。四到六巷新泽西收费公路上的交通畅通无阻。幸运的是,除了最乡村社区以外,还有数百个市政公园和数英里的步行小径,并带有训练有素的标志。分钟数分钟,南费城国际机场,朱莉娅和我在1776年圣诞节夜在乔治·华盛顿大陆军队在黑暗中越过黑暗的地方越过了特拉华河。黑森军队在一场关键的战斗中感到惊讶。十一年后,新泽西州成为第一个批准《权利法案》的州,也是第三个批准宪法的国家。两年后,华盛顿将军成为我们的第一任总统。在新泽西州占500万英亩,是美国第五个最小的州。,但在每英亩的基础上,它是人口最多的。一旦您到达伊丽莎白(Elizabeth)以南,人口为135,829。当您到达克莱门顿的鲍勃的松树林林业办公室时,人口为5,344,您正在进入林业和农业国家,并由庞大的城市道路网络相互联系的小乡村城镇打击。面向页面上的地图追踪了我们从10月3日至10日与鲍勃一起在车轮上旅行的狭窄铺路和未铺路的道路。1600年代初,瑞典人和荷兰人降落在附近。在Speedwell附近的Lee Brothers Forestry and Cranberry养殖业务上,我们通过了一个标志着Eagle Tavern的位置。它欢迎渴的旅行者从费城到塔克顿的旅程
作为该项目的一部分,CARB 于 2020 年与亚利桑那大学合作,并于 2021 年和 2023 年与 Carbon Mapper 合作,在加州部分地区进行羽流测绘飞行。在这些飞行中,共检测到 502 个甲烷羽流,与来自两个主要行业的 75 个不同运营商建立了 245 份联系:垃圾填埋场和石油和天然气设施。还检测到了来自其他行业的少量羽流,包括奶牛场、堆肥作业、厌氧消化器、炼油厂和热电联产厂,但这些羽流不在本报告的讨论范围内。CARB 工作人员确定了每个甲烷羽流源头的基础设施所有者,并通过 245 份独特的“事件报告”直接与垃圾填埋场和石油和天然气运营商分享了调查结果。运营商被要求通过实地调查(如有必要)确定排放的确切来源,修复排放源(如果可能),并向 CARB 报告他们的发现。运营商对这些事件报告的回应率为 94%。石油和天然气行业运营商通常会在一两天内采取行动,并在两周内对 CARB 做出回应。垃圾填埋场运营商通常会在一两周内采取行动,但许多垃圾填埋场运营商反应迟缓,直到几个月后才分享他们的发现。根据运营商的回应,40% 的事件被归类为“A 类”,这意味着运营商在没有收到 CARB 通知的情况下不知道排放情况,例如部件损坏或故障。12% 的事件报告被归类为“B 类”排放,这意味着检测到的甲烷羽流来自符合监管要求的正常运行产生的排放。27% 的事件被归类为“C 类”,这意味着检测到的羽流与短期维护或施工期间发生的排放有关。其余事件报告中的排放源是运营商在进行现场检查后未发现的(15%)或没有回应(6%)。在所有“A 类”排放情况下,运营商能够停止或修复相关部件并减轻排放源。因此,在约 40% 的已确定案例中,该技术直接支持了甲烷排放的减缓。
摘要:通过使用抗生素成功的牲畜行业的实践,该行业持续了五十年来,研究人员长期以来一直对抗生素生产的抗生素替代品感兴趣。益生菌可以潜在地减少牲畜中的肠道疾病并提高其生产力。这项研究的目的是将推定的益生菌与骆驼牛奶分离,并针对沙门氏菌感染以及宿主免疫发育进行测试。从沙特阿拉伯奶牛场的六个不同的骆驼牛奶样品中获得了13种不同的分离株。在六个分离株(PM1,PM2,PM3,PM4,PM5和PM6)中,三个显示革兰氏阳性特征对过氧化氢酶和溶血分析的反应负面反应。PM1,PM5和PM6显示出对禽病原体的显着非极性表面特性(> 51%疏水)和有效的抗菌活性,即S. enterica,S。typhi,S。aureus和E. coli。PM5表现出很大的益生菌特征;因此,进一步关注了它。pm5被16S rRNA测序方法鉴定为枯草芽孢杆菌OQ913924,并显示出相似性矩阵> 99%。使用体内鸡模型来获得益生菌的健康益处。在沙门氏菌感染后,粘膜免疫反应显着增加(p <0.01),并且没有任何挑战方案引起肠道含量感染后的死亡率或临床症状。S。肠杆菌在脾脏,胸腺和小肠中的效果显着降低。鸡肉粪中的肠肠s。肠载荷从口腔喂养的枯草芽孢杆菌PM5喂养的鸡中的CFU 7.2降低到5.2。益生菌喂养的鸡显示出缓冲的肠含量,并对丁酸(P <0.05)和肠道白介素1β(IL1-β),C反应性蛋白(CRP)和干扰素Gamma(IFN-γ)水平呈阳性(p <0.05)。此外,枯草芽孢杆菌PM5表现出与腹膜巨噬细胞的显着结合并抑制肠链球菌表面粘附,表明巨噬细胞中枯草芽孢杆菌PM5的共聚集。可以得出结论,补充益生菌可以改善肉鸡的生长性能以及针对肠道病原体的肉鸡质量。在不久的将来将这种益生菌引入商业家禽饲料市场可能会有助于缩小现在鸡肉育种和消费者需求之间存在的差距。