丹麦 Electrochaea.dk ApS c/o Sønderjyllands Revision Torvegade 6 6330 Padborg 行业 电转气、能源存储、二氧化碳回收、可再生燃料、可再生甲烷、电子甲烷、绿色甲烷、清洁甲烷、可再生天然气、可再生能源、绿色气体、生物技术、清洁技术、RNG、SNG 关于 Electrochaea Electrochaea 正在将其电转气 (P2G) 技术商业化,通过提供电网规模的可再生气体发电和能源存储解决方案来取代化石燃料。我们的专有工艺将可再生电力和二氧化碳转化为电网质量的可再生甲烷,以便储存和分配。我们的中试工厂已将可再生甲烷注入瑞士和丹麦的商业天然气管网。使用我们的工艺,可再生甲烷由我们的专利生物催化剂从 CO2 和 H2 合成,生物催化剂是一种选择性进化的微生物,称为产甲烷古菌。管道级甲烷在我们可扩展且强大的甲烷化系统中生产,可注入天然气管网或立即用作燃料。我们的工艺减少了二氧化碳排放,而是回收了厌氧消化器、垃圾填埋场、奶牛场、发酵设施或工业过程等二氧化碳源。可再生氢气可以通过电解从可再生电力中产生,也可以通过某些将氢气作为废品的工业过程产生。我们的生物催化剂具有高效性和稳定性,这使我们的专利甲烷化技术能够以更低的资本和运营成本运行,并且比传统的热化学甲烷化工艺具有更大的灵活性。生物催化剂与可变的工作周期和二氧化碳源中的常见杂质兼容。P2G 储能通过现有的天然气网络基础设施实现几乎无限的存储容量。可扩展的流程可实现广泛的部署。Electrochaea 将其技术授权给商业合作伙伴,提供我们专有的生物催化剂、某些工程/设计文档和相关服务的访问权限,以支持我们工艺的运营实施。Electrochaea GmbH 是一家充满活力的成长阶段公司,总部、工程和开发团队位于德国慕尼黑。Electrochaea 的子公司位于丹麦和美国加利福尼亚州。点击此处即可虚拟参观我们位于瑞士索洛图恩的工业规模试验工厂。
农业 新法律的主要条款包括保护谷物销售商和为宽带提供资金 新法律为农业部提供资金,其条款包括为新兴农民提供额外支持、为谷物销售商提供有意义的保护以及为扩大宽带接入提供额外资金。众议员 Samantha Vang (DFL-Brooklyn Center) 和参议员 Aric Putnam (DFL-St. Cloud) 是提案人。 2024-25 两年期各机构的普通基金拨款包括拨给农业部的 1.6345 亿美元(增加近 4000 万美元);拨给就业和经济发展部宽带发展办公室的 1.257 亿美元(增加 1 亿美元);以及拨给动物健康委员会的 1264 万美元。农业增长、研究和创新计划的拨款为 5020 万美元,其中包括 1150 万美元的生物激励支付。其他支出包括向乳业援助、投资和救济倡议项目拨款 400 万美元,该项目支持参加联邦乳业利润覆盖项目的小型奶牛场;拨款 400 万美元用于支持城市和青年农业项目;拨款 250 万美元用于牲畜加工补助金;拨款 230 万美元用于从农场到学校项目,该项目包括早期儿童教育中心;以及拨款 200 万美元用于优质食品获取项目。该法案拨款 2140 万美元给明尼苏达大学农业研究、教育、推广和技术转让项目,其中 450 万美元拨给明尼苏达州农业教育领导委员会;200 万美元用于禽流感研究;160 万美元拨给 Forever Green,用于开发耐寒的活土壤覆盖作物;70 万美元用于深冬温室。该法案中的其他拨款包括:向 Second Harvest Heartland 拨款 390 万美元,用于该州的六家 Feeding America 食物银行(其中至少 85 万美元必须用于牛奶); 125 万美元用于土壤健康补助,每位受助人最高可获得 5 万美元;50 万美元用于开发连续生长的覆盖作物;37.2 万美元用于推广明尼苏达州种植的产品;30 万美元用于有害杂草管理。该法案将向宽带发展办公室拨款 1.257 亿美元。它还将边境到边境宽带计划中单个项目的可用金额增加到 1000 万美元。此外,它将每年拨出 2000 万美元用于 50% 的州配套资金不足的项目。低密度计划最多可资助 75% 的项目成本。
1. 简介农场级经济模型 (FEM) 是一个全农场年度经济模拟模型,可模拟各种情景对农场经济指标的影响。FEM 的开发始于 1992 年,作为国家畜牧业和环境试点项目 (NPP;Jones 等人,1993) 的一部分。该模型的初始版本是作为通用代数建模系统 (GAMS;Brooke 等人,2002) 应用程序构建的。随后,对 FEM 进行了大幅修改,以提供更大的灵活性来分析与农业相关的各种政策和实践。由于其历史,FEM 包含与环境问题和农业接口相关的强大组件。模型中提供了精心设计的工具和例程,用于指定粪便处理实践和其他与水和空气质量问题有关的农场规范。 FEM 还包含特殊例程,用于将模型链接到各种环境模拟模型,例如农业政策环境扩展器 (APEX;Williams 等人,2000) 和土壤和水评估工具 (SWAT;Arnold 等人,1999)。包括 FEM 和两个或更多环境模拟模型的综合经济和环境模拟系统的最新示例是 CEEOT-SWAPP(带有 SWAT/APEX 接口程序的综合经济和环境优化工具;Saleh 等人,2007)。尽管在开发过程中强调环境问题,但 FEM 也适用于农业政策和农场分析的其他方面。该模型可用于评估投入税、政府计划、投入和产出价格变化以及其他外生因素对农场收入和成本的影响。FEM 的一个关键特征是其灵活性。用户可以在 FEM 项目中包含任意数量的农场和任意数量的场景。用户仅受其可支配的计算资源的限制。此外,用户可以定义任何单个农场,以包括不同作物和不同牲畜品种的任意组合。例如,单个农场可以包括两块田地,一块种植玉米(用于玉米-大豆轮作),另一块用作苜蓿田。在同一个农场,用户可以包括大型育肥猪场和小型奶牛场。FEM 提供的灵活性包含在其设计中,目的是确保模型能够容纳可能研究的多种农场类型。营养跟踪工具 (NTT;Saleh 等人,2011) 中呈现的经济产出是通过 FEM 模拟获得的。为了模拟 FEM,在 NTT 中输入的用户数据通过 NTT 界面和 FEM 中的链接程序传输到 FEM。FEM 整体模拟农场,因此无论感兴趣的区域大小如何,FEM 都会模拟整个代表性农场,以捕捉场景的全部经济效应。为此,NTT 程序中已包含一组代表性农场。一旦在 FEM 中完成经济模拟,输出将由 NTT 界面读取并呈现给用户。
有效的基因选择与农耕方法的进步相结合,使粮食产量大幅提高,这是现代农业最伟大的成就之一。例如,过去五十年,奶牛业的牛奶产量增加了一倍多,而奶牛总数却大幅减少。这主要是通过生产系统的集约化、对产奶量和有限数量的相关性状进行直接基因选择,以及使用现代技术(例如人工授精和基因组选择)实现的。尽管生产效率得到了很大的提高,但在此过程中也出现了严重的缺陷。首先,品种间遗传多样性急剧减少,全球使用的常见奶牛品种很少,品种内遗传多样性也大幅减少。对产奶量的密集选择也导致了与生育力、健康、寿命和环境敏感性相关的性状的不利遗传反应。展望未来,乳业需要继续完善当前的选择指标和育种目标,更加重视与动物福利、健康、寿命、环境效率(例如甲烷排放和饲料效率)和整体恢复力相关的特征。这需要通过定义标准(特征)来实现,这些标准(特征)必须(a)能够很好地代表各自表型背后的生物学机制,(b)具有遗传性,并且(c)能够在大量动物中尽可能早地进行经济有效的测量。乳牛业的长期可持续性还需要生产系统的多样化,加大对遗传资源开发的投资,这些遗传资源能够抵御特定农业系统(例如有机、农业生态和基于牧场的山地放牧农业系统)中发生的干扰。应将地方品种的保护、遗传改良和使用纳入现代奶牛产业,并应更加小心谨慎,避免奶牛种群遗传多样性进一步丧失。在这篇评论中,我们承认与奶牛场集约化密切相关的高产奶牛遗传学进展已达到极限。我们讨论了发展强劲和长期可持续的奶业需要解决的关键问题,该行业应最大限度地提高动物福利(个体动物的基本需求和积极福利)和生产效率,同时最大限度地减少环境足迹、所需投入和对外部因素的敏感性。2021 作者。由 Elsevier BV 代表动物联盟出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
在经济学方面,开发300个新项目将产生大约8,000个新工作岗位和约3.4B美元的资本部署。产生有意义的影响将需要在全国范围内将这些操作部署在大规模上,并且在AD达到到期水平之前,还有很多工作要做。,但凭借其雄心勃勃的政策,纽约 - 能源视觉的家乡可以领导指控,证明能源愿景总裁Matt Tomich。AD是一个复杂的生物学过程,但Digester Doc和首席执行官Valkyrie Analytics的Charlton简单地解释了该概念的要旨:“碳不消失;它采取了不同的形式。它作为二氧化碳,土壤中的碳或生物物质存在。话虽如此,如果我们将通过AD捕获的能量转换为甲烷,我们会防止在将材料应用于土地或其他地方时发生的排放。,而消化池内部甲烷的碳越多,排放量就越少。”随着技术的发展,它会提供改进,包括更熟练的碳转换过程多年来,该行业已将转化效率从30%或35%提高到65%或70%。排放率的捕获率现在为99.9%,进一步提高了结果。仍然,鉴于有机材料的数量和多样性,这些系统只能独自完成。另一个现实是,AD留下了需要辅助处理方法的消化后残留物。堆肥已成为一种互补的后端技术,进入了众人瞩目的焦点。农业部门越来越多地转向AD。在现场应用之前堆肥消化固体实际上进一步减少了甲烷排放。在她的团队的多项研究中,正在评估消化酸盐应用对土壤过程,作物生产和环境的影响。,虽然堆肥在支撑较小的系统方面非常有用,但具有较大操作的热解或气化可能会更好,并且可以将固体和碳转化为各种产品。“因此,根据您的使用方式,有不同的解决方案,”他说。奶农尤其是发现,通过将肥料作为原料提供,他们可以产生额外的收入,更可持续地管理大量的牛便便,并最终减少其碳足迹。在纽约,通过报告的计算,将大约260个新广告带到奶牛场可以将甲烷从粪便中减少56.5%。作为其潜在价值作为原料获得更多的识别性粪便是一个不断增长的研究兴趣,一个目标是弄清楚如何开发具有成本效益的治疗方法以提高其生物降解性和沼气生产率。加州大学戴维斯分校教授兼空中质量专家Frank Mitloehner说,尽管已经研究了许多治疗方法,但经济学却阻碍了商业化的进展。尽管他和他的同事们参与了表现出希望的项目;他指出了涉及土地应用的堆肥肥料的工作。在其他领域正在进行研究,从自动化到改善沼气生产到多年生草作为原料的潜力。
引言和致谢。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第1页,两种不同批准的污渍对纽约市供水的病原体结果的影响 - Kerri Alderisio和Lisa Anne Blancero。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第2页鱼类是否关心Catskill山流中的天然渠道设计修复?- 巴里·巴尔迪戈(Barry Baldigo)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3。。。。。。。。。。。。。。。。。。。。。。。第4页。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第5页通过Wachusett水库流域,马萨诸塞州中部 - 辛西娅·卡斯特伦,埃里希·菲尔德,戴维·菲尔德和宝拉·里斯,二霉素副产品的表征,转化和运输。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第6页印度布鲁克 - 克罗顿峡谷分水岭保护行动计划 - 特蕾西·科比特(Tracey Corbitt)和苏珊·达林(Susan Darling)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第7页。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第9页。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第10页第10页的签名签名到纽约流的污染物 - 查尔斯·道夫,安东尼·K·奥夫登坎普,琳达·G·C·卡特和大卫·B·阿科特。。。。。。。页。。。。。。。。。。。。。。。。。。。。第12页有点加密好吗?很高的量抽样结果 - Stephen estes-Smargiassi。。。。。。。。。。第13页,马萨诸塞州中部的Wachusett水库流域建模,用于改进流域管理 - Erich Fiedler,Paula Rees和David Reckhow。。。。。。。。。。。。。。。。。。。。。。。第14页粗糙的钻石:西雅图的雪松河流域 - 苏珊娜·弗拉德(Suzanne Flagor)和达里安·戴维斯(Darian Davis)。。。。。。。第15页使用公共宣传和教育,讨论宠物废物的危险,以此作为降低饮用水供应支流中细菌负荷的工具 - 凯利·弗雷达(Kelly Freda)。。。。。。。。。。。第16页确定道路盐对地下水质量在纽约萨福克县 - 泰兰·富勒(Tyrand Fuller)的BR/CL摩尔比分析中对地下水质量的影响。。。。。。。。第17页的环境和经济影响增加了玉米土地,并将不采用管理纳入纽约奶牛场 - 卢拉·盖布雷梅尔(Lula Ghebremichael),塔米·韦思(Tamie Veith),保罗·塞罗萨雷蒂(Paul Ceroletti)和戴尔·露德(Dale Dewing)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第18页的白尾鹿浏览对流域森林以及DEP的评估和管理策略 - 弗雷德·胶质的影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第19页使用膜微孔升级废水设施遵守纽约市分水岭规则和法规,案例研究:霍巴特,纽约 - 乔·哈比布和理查德·雷德米尔。。。。。。。。。。第20页,在哈德逊流域以西 - Myrna Hall,Prajjjwal K. Panday,Charles A. S. Hall和Mary Tyrrell的纽约市,不透水表面在未来的营养负荷中的作用。。。。。。。。。。。。。。。。Page 21 Catskill流域公司化粪池监测计划 - James Hassett和Thomas Dejohn。。。。。Page 22风暴事件监测2006年Esopus Creek的病原体 - Paul Lafiandra。。。。。。。。。。。。。。。。。。。第23页利用流域土地信息系统来管理城市拥有的供水土地和保护地役权 - Paul Lenz。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第24页贾迪亚属的雨水负荷。和隐孢子虫属。在纽约市水库的多年生溪流中 - 克里斯蒂安·佩斯(Christian Pace),凯里·安·阿尔德里西奥(Kerri Ann Alderisio),詹姆斯·C·阿莱尔(James C.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第25页的肠道病毒在纽约市的Catskill和特拉华州流域 - 杰拉尔德·普拉特(Gerald Pratt)和克里·奥尔德里西奥(Kerri Alderisio)的地表水中发病率。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。第26页
zeeshan.haider@imbb.uol.edu.pk摘要β半乳糖苷酶是水解酶,可以在真菌,细菌和酵母等微生物以及植物,动物细胞和重组来源中找到。该酶用于两个目的:从乳糖不耐症的人那里消除乳糖并创建半乳糖化的商品。这项研究旨在隔离和优化从奶牛场附近收集的土壤样品中产生β-半乳糖苷酶的微生物。用于筛选X-gal(5-溴-4-氯-3- indoyl-β-d-半乳乙酰糖苷),使用具有蓝色的糖苷酶活性的指标,是一种蓝色的糖苷酶活性的指标。用pHAT7获得最大的酶产生,温度为37ºC。在蔗糖,硫酸铵,硫酸镁和小麦粉中观察到最大产生的其他因素。在酶测定中ONPG(正硝基苯基-β-半乳糖苷)中用作底物。 这些结果揭示了乳杆菌属。 产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。 引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。 该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。 作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。 最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。在酶测定中ONPG(正硝基苯基-β-半乳糖苷)中用作底物。这些结果揭示了乳杆菌属。产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。 引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。 该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。 作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。 最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。乳糖 - 水解酶,β-半乳糖苷酶是一种水解乳糖的酶,因此被认为是乳制品行业的基本酶。β-半乳糖苷酶是一种极为必要的酶,它通过破坏乳糖(牛奶甜糖)来完全消化牛奶。这种类型的酶主要出现在微生物中(Burn,2012),动物器官和植物,例如杏仁,苹果,桃子和杏子。除了其水解作用外,它还用于生产含有乳糖的人含量较低的食品。对于使用环境污染物奶酪乳清的利用也至关重要(Gandhi等,2018),通过降低
资料来源1美国环境保护局(EPA),“厌氧消化如何?”访问2021年6月。链接:https://www.epa.gov/agstar/how-does-anaerobic-digestion-work。2 Gittelson P.等人,“沼气的错误承诺:为什么沼气是一个环境正义问题”,环境正义,2021年5月。链接:https://www.liebertpub.com/doi/10.1089/env.2021.0025。3 EPA。 “厌氧消化如何起作用?” https://www.epa.gov/agstar/how-does-anaerobic-digestion-work 4马里兰州农业部(MDA),“ Cleanbay Renewables”,2022年6月。 链接:https://mda.maryland.gov/resource_conservation/pages/cleanbay_renewables.aspx; Cleanbay Renewables Delmarva,2022年6月访问。 链接:https://cleanbaydelmarva.com/; Chesapeake Utilities Corporation,“ Cleanbay Renewables,Inc。可再生天然气项目”,2022年6月访问。 链接:https://chpk.com/corporate-responsibility/economic- developmin/cleanbay-renewables-rng/。 5 Cleanbay Renewables Delmarva,2022年6月访问。 链接:https://cleanbaydelmarva.com/; Rush,Don,“争夺鸡肉垃圾加工厂(乔治敦 - 第1部分)”,Delmarva公共媒体,2021年12月9日。 链接:https://www.delmarvapublicmedia.org/local-news/2021-12-09/battle-over-chicken-chicken-litter-plant-plants-plants-georgetown-part-part--part--1。 6麦克阿瑟(MacArthur),罗恩(Ron),“生物能源揭示了回收设施的计划”,《宪报》,2021年2月26日。 链接:https://www.capegazette.com/article/bioenergy-reveals-plans-plans-recycling-facility/215697。 7下东岸马里兰州,“透视项目:天然气管道扩展”,2022年8月22日访问。3 EPA。“厌氧消化如何起作用?” https://www.epa.gov/agstar/how-does-anaerobic-digestion-work 4马里兰州农业部(MDA),“ Cleanbay Renewables”,2022年6月。链接:https://mda.maryland.gov/resource_conservation/pages/cleanbay_renewables.aspx; Cleanbay Renewables Delmarva,2022年6月访问。链接:https://cleanbaydelmarva.com/; Chesapeake Utilities Corporation,“ Cleanbay Renewables,Inc。可再生天然气项目”,2022年6月访问。链接:https://chpk.com/corporate-responsibility/economic- developmin/cleanbay-renewables-rng/。5 Cleanbay Renewables Delmarva,2022年6月访问。链接:https://cleanbaydelmarva.com/; Rush,Don,“争夺鸡肉垃圾加工厂(乔治敦 - 第1部分)”,Delmarva公共媒体,2021年12月9日。链接:https://www.delmarvapublicmedia.org/local-news/2021-12-09/battle-over-chicken-chicken-litter-plant-plants-plants-georgetown-part-part--part--1。6麦克阿瑟(MacArthur),罗恩(Ron),“生物能源揭示了回收设施的计划”,《宪报》,2021年2月26日。链接:https://www.capegazette.com/article/bioenergy-reveals-plans-plans-recycling-facility/215697。7下东岸马里兰州,“透视项目:天然气管道扩展”,2022年8月22日访问。链接:https://lesmd.net/projects/natural-gas-pipeline-extension。8 Grubert,Emily,“大规模可再生天然气系统可能是气候密集的:甲烷原料和泄漏率的影响”,环境研究信,2020年8月。 链接:https://iopscience.iop.org/article/10.1088/1748-9326/ab9335;美国EPA,“废物减少模型中使用的温室气体排放和能量因素的文档(温暖):管理实践章节。” 2020年11月。 链接:https://www.epa.gov/sites/default/files/2020-12/documents/documents/harm_management_practices_v15_10-29-29-2020.pdf。 9 Storrow,本杰明,“甲烷泄漏消除了天然气的一些气候益处”,E&E新闻,2020年5月5日。 链接:https://www.scientificamerican.com/article/methane-leaks-erase-some-some-of-the-climate-benefits-of-natural-gas/。 10假设生物能源Devco和CleanBay可再生能源项目将产生180万MCF的可再生天然气,泄漏率为2%至15%。 GHG等效性基于甲烷的20年全球变暖潜力(即甲烷的效力是二氧化碳的84倍)。 11马里兰州环境部(MDE),“新COMAR 26.11.41的技术支持文件,新法规.01至.07在新章COMAR 26.11.41控制天然气行业的甲烷排放控制”,2020年7月。。8 Grubert,Emily,“大规模可再生天然气系统可能是气候密集的:甲烷原料和泄漏率的影响”,环境研究信,2020年8月。链接:https://iopscience.iop.org/article/10.1088/1748-9326/ab9335;美国EPA,“废物减少模型中使用的温室气体排放和能量因素的文档(温暖):管理实践章节。” 2020年11月。链接:https://www.epa.gov/sites/default/files/2020-12/documents/documents/harm_management_practices_v15_10-29-29-2020.pdf。9 Storrow,本杰明,“甲烷泄漏消除了天然气的一些气候益处”,E&E新闻,2020年5月5日。链接:https://www.scientificamerican.com/article/methane-leaks-erase-some-some-of-the-climate-benefits-of-natural-gas/。10假设生物能源Devco和CleanBay可再生能源项目将产生180万MCF的可再生天然气,泄漏率为2%至15%。GHG等效性基于甲烷的20年全球变暖潜力(即甲烷的效力是二氧化碳的84倍)。11马里兰州环境部(MDE),“新COMAR 26.11.41的技术支持文件,新法规.01至.07在新章COMAR 26.11.41控制天然气行业的甲烷排放控制”,2020年7月。链接:https://mde.maryland.gov/programs/regulations/air/documents/tsd_ng_methane.pdf 12 kreidenweis,U。等,“肉鸡肥料治疗中的温室气体排放量是在良好的biogas生产中最低的,链接:https://doi.org/10.1016/j.jclepro.2020.124969。13 Gittelson P.等人,“沼气的错误承诺:为什么沼气是环境正义问题”,环境正义,2021年5月。链接:https://www.liebertpub.com/doi/10.1089/env.2021.0025。14 Alvarez,R。等人,“美国石油和天然气供应链中甲烷排放的评估”,科学,2018年6月。链接:https://www.science.org/doi/10.1126/science.aar7204。15 Foehringer商人Emma和Grace Van Deelan,“甲烷捕获在奶牛场,但该计划可能会带来'意想不到的后果',”内部气候新闻,2022年9月19日。链接:https://insideclimatenews.org/news/19092022/dairy-digesters-methane-california-manure/。