姜黄素(CUR)是一种关键化合物,广泛用于药物和医疗应用,例如抗氧化剂,抗菌,抗癌和抗炎药。然而,由于其不溶性,低生物利用度和快速降解,其某些局限性在不同目的面临。可以通过制定CUR纳米颗粒(CUR-NP)来克服这些局限性,以提高其生物活性并增强其溶解度。这项研究旨在合成和表征Cur-NP,并评估针对不同致病微生物的抗氧化活性和抗菌效率。cur- cur-对大肠杆菌,鼠伤伤口和Y. Enterocolitica(革兰氏阴性菌),S。Aureus,B。cereus(gram阳性)以及致病性真菌(Aspergillus niger,flavus niger,flavus fimim nighim fimim fimant and consociritica)和pen虫膨胀的抗菌效率。合成的Cur-NP显示出圆形,平均尺寸为44±8 nm,43±4 mVξ-电位。cur-nps以剂量依赖性的方式显示出有效的抗氧化剂(IC50为1550 µg/ml)和针对测试细菌和真菌的抗菌特性。可以得出结论,Cur-NP是一个有希望的候选人,可以用作食物保存或医疗和药物应用以替代抗生素的抗生素。
摘要姜黄(Curcuma longa)含有活性化合物姜黄素,该姜黄素具有抗植物,抗疟疾,抗炎作用。这项研究旨在激发姜黄素的潜力,姜黄素的潜力通过抑制falciparim疟原虫通过拓扑异构酶酶抑制了抗植物的潜力。本研究中使用的方法是一项镜头实验研究,其中有几个阶段,包括准备活性化合物,活性物质结合能的预测,化合物结合的预测,分子对接,ADME的预测(吸收,分布,分布,代谢,排泄)和毒性。结果表明,姜黄素与阿丁蛋白素结合,都与拓扑异构酶VI蛋白相互作用,并提供相似的抑制作用。ADME预测表明,姜黄素具有良好的用作口服药物的潜力,其中两个LD50都包含在第4类。姜黄素的结合亲和力和生物活性低于青蒿素,但仍被认为具有更安全的抗植物替代品。关键字疟原虫恶性疟原虫,姜黄龙,拓扑异构酶,
本介质中提供的数据符合我们目前的知识水平,但并不免除用户在收到所有供货后立即仔细检查的义务。我们保留在技术进步或新发展的范围内更改产品常数的权利。由于我们无法控制加工过程中的条件,尤其是在同时使用其他公司的原材料的情况下,应通过初步试验来检查本介质中提出的建议。我们提供的信息并不免除用户调查侵犯第三方权利的可能性并在必要时澄清情况的义务。使用建议并不构成对产品适合或适用于特定用途的明示或暗示的保证。
此媒介中显示的数据符合我们当前的知识状态,但不会在收据时仔细地免除用户立即检查所有耗材。我们保留在技术进度或新发展范围内更改产品常数的权利。该媒介中提出的建议应通过初步试验检查,因为在处理我们无法控制的过程中,尤其是在使用其他公司原材料的情况下。我们提供的信息不会使用户免受调查侵犯第三方权利的可能性的义务,并在必要时澄清该职位。使用建议不构成针对特定目的的适合性或适用性的明示或暗示保修。
摘要:植物已被用作各种医疗状况的一种治疗方法,超过80%的人口依赖于医疗保健。姜黄素是Curcuma Longa L.的芳香香料,是该列表的重要贡献者。姜黄素是无毒的,并且具有许多益处,包括抗炎,抗菌素,抗氧化剂和镇痛特性。It contains a high number of antioxidants, which can help treat various ailments, including digestion, smallpox, skin cancer, wound healing, body weight, neurological illnesses, cardiovascular diseases, erectile dysfunction, malaria, chicken pox, urinary tract infections, conjunctivitis, rheumatoid arthritis, chronic anterior uveitis, and liver ailments.姜黄素还用于增强整体能量,消除蠕虫,调节月经和解决消化系统疾病。姜黄素是一种多功能的药理学化合物,具有有效的治愈性和受调节的化学生物学特性,可有效解决各种人类健康状况。但是,它也可能具有毒性作用。由于其生物利用度差,吸收速度缓慢,代谢快速和强制性消除。为增强姜黄素生物利用度,已经使用了抑制姜黄素代谢途径的药物。本综述提供了姜黄素及其有毒作用的多种药用益处的全面概述。
目的:本研究旨在根据药理网络策略确定姜黄素在牙周炎上的分子机制。方法:鉴定出姜黄素和差异表达基因的潜在治疗靶标。随后,我们提取了共同的分子并分析了它们。进行了代谢途径富集和基因本体分析,并推断了蛋白质E蛋白质相互作用网络。这些分析允许识别关键蛋白质。最后,用姜黄素对主密钥蛋白进行了分子对接。结果:我们的结果表明,在牙周炎中差异表达了55个基因,并且是姜黄素的潜在靶标。此外,我们观察到这些基因参与细胞运动和免疫反应,并且与趋化因子受体(CXCR)和酶活性有关,例如蛛网膜酸5-脂氧酶(Alox5)。我们识别了六个关键蛋白,IL1B,CXCL8,CD44,MMP2,EGFR和ITGAM;分子对接表明,这六种蛋白质自发与姜黄素结合。结论:这项研究的结果有助于我们了解牙周炎中姜黄素的分子机制。我们提出姜黄素会影响促炎细胞因子,ALOX5和细胞通过趋化因子受体迁移,并作用于细胞膜上。此外,我们确定了在这种机制中必不可少的六个关键蛋白,所有这些蛋白质都自发地与姜黄素结合。©2023日本口腔生物学协会。由Elsevier B.V.保留所有权利。
完整作者列表: 姜静;电子科技大学;休斯顿大学 朱航天;休斯顿大学 牛毅;电子科技大学 朱青;休斯顿大学 宋少伟;休斯顿大学 周婷;电子科技大学;休斯顿大学 王超;电子科技大学 任志锋;休斯顿大学
早期生活压力 (ELS) 和重度抑郁症 (MDD) 具有共同的神经网络异常。然而,尚不清楚 ELS 和 MDD 如何单独和/或共同与大脑网络相关,以及患有和不患有 ELS 的抑郁症患者之间是否存在神经差异。此外,先前的研究评估了静态与动态网络属性,这是一个关键的空白,因为大脑网络会随着时间的推移显示协调活动的变化。71 名未接受药物治疗的女性,有或没有童年性虐待 (CSA) 史和/或 MDD,完成了静息状态扫描和压力任务,其中收集了皮质醇和情感评分。检查了重复的功能网络共激活模式 (CAP),并计算了 CAP 中的时间(每个 CAP 表达的次数)和转换频率(不同 CAP 之间的转换)。检查了 MDD 和 CSA 对 CAP 指标的影响,并将 CAP 指标与抑郁和压力相关变量相关联。结果表明,MDD 与 CAP 指标相关,但 CSA 与 CAP 指标无关。具体而言,与 HC(N = 36)相比,患有 MDD(N = 35)的个体在后默认模式 (DMN)-额顶网络 (FPN) CAP 中花费的时间更多,并且在后 DMN-FPN 和原型 DMN CAP 之间转换的频率更高。在各个组中,在后 DMN-FPN CAP 中花费的时间越多,DMN-FPN 和原型 DMN CAP 转换频率越高,反刍的频率就越高。DMN 和 FPN 之间的不平衡似乎是 MDD 的核心,可能导致与 MDD 相关的认知功能障碍,包括反刍。出乎意料的是,CSA 并没有调节此类功能障碍,这一发现需要在未来样本量更大的研究中进行复制。
神经反馈训练 (NFT) 为现代医学界做出了有益的贡献。NFT 是基于操作性条件作用原理的生物反馈的一个子集。它是一种建立行为与效果之间关系的学习方法,可获得奖励和惩罚 (Cherry, 2020; Engelbregt 等人, 2016; Strehl, 2014)。从理论上讲,生物反馈是自动神经系统 (ANS) 的生物学见解。在其起源之前,“实时生理镜像”一词在第二次世界大战期间就已存在 (Sattar & Valdiya, 2017)。它仅限于心率、血压、皮肤温度、消化、呼吸和性唤起等生理过程。所有示例都是非自愿的,由 ANS 控制。在 1950 年代,一个反对的科学家团队不赞成 ANS 可能影响人类生理和心理状态的想法,这些状态也会对生物过程起作用 (Jones, 2016)。它在操作性条件、信息处理或技能学习方面仍存在疑问。此外,该假设不足以作为药物治疗的基础(Sattar & Valdiya,2017;Jones,2016)。研究人员在 20 世纪 60 年代发现,ANS 功能可能会发生类似于操作性环境的改变。因此,这是一个将生物反馈转变为可用于医疗实践的适当治疗方法的机会。