描述:这些设备与 Optek 的 4N 系列光电隔离器类似,但芯片除外。它按照 MIL-PRF- 19500 TXV 级别进行处理,并可根据客户 SCD 进行修改。每个设备都由一个 IRLED 和 NPN 晶体管组成,安装在密封 TO-78 金属罐、6 针 SMD 或定制包装中。应用:卫星、发射器、太空飞行器和行星探测车等太空应用中的电路电气隔离。
要比较800-1020 nm范围的飞秒激光脉冲的SHG的性能,使用了各种制造和加工程序[4]来合成SI/SIO 2和SIO 2中孔纳米颗粒。红外飞秒激光扫描系统用于映射[5]。发现热或激光诱导的Si退火导致Si相从无定形转变为纳米晶体,从而改善了纳米颗粒的非线性特性,并使它们表现出宽带光发光。这些结果证实了中孔SI/SIO 2纳米颗粒对第二次谐波生成的效率,并扩展了其在纳米级光学中的潜在应用[6]。
This is the annual report of the Imperial College Consortium on Pore-Scale Modelling and Imaging.At our project meeting we will highlight the progress we have made over the last year as well as presenting plans for the future.Our activities have continued to grow this year – indeed we now have over 20 researchers in the group.现在,从孔到田间尺度,我们在氢存储方面做出了巨大的集成努力,并继续强调机器学习。我们还继续在传统的二氧化碳存储区域工作,同时追求与制造多孔材料设计有关的新想法。Our overall theme is to study flow in porous media with application to the energy transition.The highlight of 2024 for me was my election as a Fellow of the Royal Society.这是一项巨大的荣誉,反映了我多年来有幸与之合作的许多出色的博士学位学生,博士后和其他同事的辛勤工作,想象力和奉献精神。Linqi Zhu who left in 2023 is now back at Imperial as a post-doc supervised by Gege Wen who is a new lecturer in the department.他的研究利用了我们必须构建机器学习模型的大型数据集,以预测和解释多相流,尤其是为了充分利用时间分辨的同步加速器图像。He works closely with Menglu Kang, who is a new visitor from China.In return, two of our visitors – Yang Gao and Gang Luo – have now left, and Shanlin Ye is due to return to China early this year.We no longer prepare a separate written report.faisal aljaberi已从阿联酋的哈利法大学拜访了我们,正在研究改进方法,以计算孔隙尺度图像的曲率和接触角,并使用结果改善我们的网络建模代码中的可润滑性表征。我们欢迎了几位新的博士生:奥拉南·阿里亚里特(Oranan Ariyarit),她将在油田中学习二氧化碳存储,并将其应用于其本地泰国的项目; Mohammed Bello who will work on reactive transport; Sasha Karabasova who is studying rate-dependent effects in flow in porous media through direct numerical simulation; and Yuxi Liang, who has transferred from Civil Engineering and is developing a pore-scale model of salt precipitation in carbon dioxide storage.As a matter of routine practice, we now make all our publications – with associated codes and data – open access.而不是整理一些论文,而是简单地提供了我们最近工作的DOI链接:这样,您可以从我们在2024年发表的大量材料中阅读您的任何兴趣。作为一开始,可以阅读一篇文章发表在《新室间杂志》首发中的文章,该文章对多孔媒体的研究需求提出了能源过渡的研究:这为未来几年中的工作提出了愿景。Of course, we have many more results and ideas to present; these will be discussed at the meeting itself.
摘要:卡博替尼是一种口服酪氨酸激酶抑制剂 (TKI),可对抗参与血管生成途径的几种受体,包括血管内皮生长因子受体 (VEGFR)、c-MET 和 AXL。卡博替尼的抗血管生成特性使其被用作治疗转移性肾细胞癌 (RCC) 的单一疗法,并迅速使这种治疗成为这些肿瘤的标准治疗方法的一部分。自免疫检查点抑制剂 (ICI) 问世以来,一线治疗中出现了新的治疗标准,包括双重 ICI 或 ICI-VEGF-TKI(包括 ICI-卡博替尼)联合治疗,并导致了更复杂的治疗算法。卡博替尼仍然是二线治疗的一种选择,并且在 ICI 使用禁忌的情况下仍然是一线标准治疗方法。本综述重点介绍了卡博替尼治疗最可能获益的患者,包括骨转移和脑转移患者以及非透明细胞肾细胞癌组织学患者。还强调了在选择治疗策略时需要考虑疾病相关症状、合并症、年龄、药物相互作用和生物标志物分析。最后,讨论了卡博替尼在肾细胞癌治疗中的应用前景。关键词:肾癌、卡博替尼、患者选择、预后、疗效、安全性
简单摘要:在本叙述性综述中,我们讨论了可逆性 MET 酪氨酸激酶抑制剂卡马替尼的开发,该药物已获批用于治疗携带 MET 外显子 14 跳跃突变的晚期非小细胞肺癌 (NSCLC)。卡马替尼于 2011 年首次发现,已显示具有良好的抗肿瘤活性。早期试验确定了片剂的推荐剂量为 400 毫克,每天两次。GEOMETRY mono-1 试验显示该药物对 MET 外显子 14 跳跃突变有效,从而促使 FDA 批准卡马替尼。目前,正在进行的临床试验正在评估与卡马替尼的联合疗法,包括阿米凡他单抗、曲美替尼和免疫疗法,以提高疗效并拓宽卡马替尼的适应症,使用新药物(如正在开发的抗体-药物偶联物)来治疗 MET 失调的 NSCLC。
摘要 胆管癌是一种发病率极高的胃肠道恶性肿瘤,可用的治疗方法有限。标准治疗包括细胞毒性化疗,如吉西他滨、铂类药物、纳米紫杉醇和氟嘧啶类似物。然而,这些方案的耐受性各不相同,不能耐受化疗的患者可选择的靶向疗法和免疫疗法有限。在胆管癌中,间充质上皮转化因子 (MET) 扩增可能为靶向治疗方法提供额外机会,尤其是考虑到非小细胞肺癌的新数据。在本病例中,我们介绍了一名转移性胆管癌患者,该患者具有高水平 MET 基因扩增,对其使用具有抗 c-MET 活性的酪氨酸激酶抑制剂卡马替尼在停止化疗后获得了部分缓解。
I. 引言当今时代是人机交互的时代,人在银行和金融机构、国防和军事、教育、医疗和交通领域、预订系统、查询系统等各个领域都发挥着至关重要的作用。由于英语的存在,欠发达地区和农村社区无法使用技术,从而导致计算机网络和通信意识的传播。对于非英语用户来说,最好的解决方案可能是用母语与人互动的智能设备。印度是一个语言多元化的国家,根据 2001 年的人口普查,印度有 1599 种语言、122 种主要语言和 22 种官方语言,其中包括印地语、英语、尼泊尔语、克什米尔语、古吉拉特语、旁遮普语、梵语、孟加拉语、奥里雅语、曼尼普尔语、马拉地语、卡纳达语、孔卡尼语、泰米尔语、泰卢固语和乌尔都语 [1,2,3] 根据第 8 附表。这些是印度的自然使用语言。本文重点研究语言代码选择,即在一次话语中从一种语言转换为另一种语言,也称为代码转换。
在亚洲,使用酪氨酸激酶抑制剂 (TKI) 的分子靶向疗法已显著提高癌症患者的总体生存率。这些药物主要以固定剂量口服给药,这通常会导致临床药代动力学和/或药效学 (PK/PD) 参数的个体间差异很大。特别是,与非亚洲患者相比,亚洲患者对某些 TKI 的反应更剧烈。这通常会导致剂量减少或完全终止治疗,这促使人们努力优化给药方案以提高药物耐受性。为了解决这些问题,治疗药物监测已应用于临床环境。这篇综述文章总结了已知会导致 PK/PD 参数变化的药理因素,例如代谢酶和转运蛋白的遗传多态性以及药物相互作用。这篇综述还讨论了在 TKI 治疗期间对亚洲患者进行个体化剂量的可能性,主要关注舒尼替尼或帕唑帕尼。关键词:酪氨酸激酶抑制剂,个体化给药,治疗药物监测,亚洲人
临床药理学 药效学特性 苹果酸舒尼替尼是一种抑制多种 RTK 的小分子,其中一些与肿瘤生长、病理性血管生成和癌症转移进展有关。舒尼替尼对多种激酶(>80 种激酶)的抑制活性进行了评估,并被确定为血小板衍生生长因子受体(PDGFRα 和 PDGFRβ)、血管内皮生长因子受体(VEGFR1、VEGFR2 和 VEGFR3)、干细胞因子受体 (KIT)、Fms 样酪氨酸激酶 3 (FLT3)、集落刺激因子受体 1 型 (CSF-1R) 和神经胶质细胞系衍生神经营养因子受体 (RET) 的抑制剂。生化和细胞试验已证实舒尼替尼可抑制这些 RTK 的活性,细胞增殖试验已证实舒尼替尼可抑制其功能。生化和细胞试验表明,其初级代谢产物的效力与舒尼替尼相似。