混合物理-机器学习模型越来越多地用于传输过程的模拟。许多与科学和工程应用相关的复杂多物理系统包括多个时空尺度,并包含一个多保真度问题,该问题在各种公式或异构计算实体之间共享一个接口。为此,我们提出了一种强大的混合分析和建模方法,结合基于物理的全阶模型 (FOM) 和数据驱动的降阶模型 (ROM),形成混合保真度描述中面向预测数字孪生技术的集成方法的构建块。在界面上,我们引入了一个长短期记忆网络,以各种形式的界面误差校正或延长来桥接这些高保真度和低保真度模型。所提出的界面学习方法被测试为一种解决 ROM-FOM 耦合问题的新方法,使用双保真度设置解决非线性平流扩散流情况,该设置可以捕捉广泛传输过程的本质。
摘要:本研究在模拟以及使用分数阶电路的实际电气元件进行实验的背景下探讨了不同分数阶的课题。在研究适当参数的电阻电容 (RC) 梯形电路的两种解决方案时,考虑了电路的不同分数阶。基于连分数展开 (CFE) 近似法设计了两个分数阶 (非整数) 元件。对 CFE 方法本身进行了修改,以允许自由选择中心脉冲。还提出了在制作单个梯形电路时,如果没有具有程序指定参数的元件,则应通过串联或并联市售元件来获得它们。最后,使用状态空间方法对这种电路进行了理论分析,并通过实验进行了验证。
更重要的是,服用这些药物可能导致各种不良反应。用皮质类固醇的使用证实与皮肤作用,体重增加,高血糖,骨质疏松症,肾上腺功能不全和白内障有关。此外,皮质类固醇治疗能够增加机会性感染的风险,尤其是与其他免疫抑制药物结合使用时。免疫调节剂产生的骨髓毒性和肝毒性的不耐受性或潜在发生可能使近四分之一的患者中断治疗。
Egill Juliusson,以前是Landsvirkjun 1简介核和地热工业开始发布截至1950年代的饱和蒸汽流量研发。碳氢化合物生产行业在1990年代开始对湿天然气计量研发变得更加感兴趣。具有饱和蒸汽和湿天然气流是两相流量计量挑战,初始湿天然气流量计量研究包含现有的饱和蒸汽计量方法。但是,碳氢化合物行业的研发的随后方向与蒸汽行业的研发有所不同。碳氢化合物行业的两相测定开发并没有倾向于渗透回,或者至少没有被蒸汽行业采用。通常缺乏独立行业之间的沟通和思想转移。碳氢化合物生产行业已经开发了流量计量技术,如果只有知识转移,可能会使包括可再生能源领域在内的其他行业受益。
摘要 — 我们提出了将 1 阶 Wasserstein 距离推广到 n 个量子态的建议。该建议恢复了正则基向量的汉明距离,更一般地恢复了正则基中对角量子态的经典 Wasserstein 距离。所提出的距离对于作用于一个量子态的量子位元的排列和幺正运算是不变的,并且对于张量积是可加的。我们的主要结果是冯·诺依曼熵关于所提距离的连续性界限,这显著加强了关于迹距离的最佳连续性界限。我们还提出了将 Lipschitz 常数推广到量子可观测量的建议。量子 Lipschitz 常数的概念使我们能够使用半定程序计算所提出的距离。我们证明了 Marton 传输不等式的量子版本和量子 Lipschitz 可观测量谱的量子高斯浓度不等式。此外,我们推导出浅量子电路的收缩系数和单量子信道的张量积相对于所提出的距离的界限。我们讨论了量子机器学习、量子香农理论和量子多体系统中的其他可能应用。
此外,通过实施新的关键要素和绩效要求,“确保[SES官员对总统和美国人民都适当责任的新绩效标准。这些新的关键要素和绩效要求评估了高级高级主管是否忠实地管理法律和总统的政策;高级主管是否维持建立原则,包括法律规定的平等和民主自治;高级主管是否表现出与总统的具体政策议程相吻合并提高与之保持一致的具体结果;以及高级主管和高级高管机构在评估总统管理议程,代理商战略计划,国会预算合理/年度绩效计划以及其他组织计划文件时的可衡量结果。
在1911年,Kamerlingh Onnes在实验中发现了某些称为“上跨导体”的金属,在过去[1] [1] [1] [2] [2]中发现了零电阻的状态。,如果在t> t c的超级导管的内部存在磁场,则当温度降低到t Meissner效应令人惊讶:在1933年之前,预计超导体会排除磁场,但不会排出磁场。 这是Fara-Day的定律,被称为“ Lippmann的定理” [4] [4] [5]:如果将磁场应用于零电阻材料中,则该材料将通过不让Eld渗透而产生的表面电流来反应,从而使磁场从其室内排除。 ,ever,法拉第定律 / lippmann的定理将预测,如果有限阻力的材料在其内部具有磁场,则将其冷却到零电阻的超导状态时,任何电流都不会流动,并且磁场将保持在内部,甚至在外部磁力源中,磁性磁性也可以恢复。 这不是超导体所做的:超导的金属自发产生一个表面电流,从而从其内部排出磁场[3]。 这似乎违反了法拉第定律。 BCS理论既没有基于电子 - 波相互作用,于1957年由Bardeen,Cooper和Schrieffer [7]提出。 对于其余三分之二,没有公认的理论。Meissner效应令人惊讶:在1933年之前,预计超导体会排除磁场,但不会排出磁场。这是Fara-Day的定律,被称为“ Lippmann的定理” [4] [4] [5]:如果将磁场应用于零电阻材料中,则该材料将通过不让Eld渗透而产生的表面电流来反应,从而使磁场从其室内排除。,ever,法拉第定律 / lippmann的定理将预测,如果有限阻力的材料在其内部具有磁场,则将其冷却到零电阻的超导状态时,任何电流都不会流动,并且磁场将保持在内部,甚至在外部磁力源中,磁性磁性也可以恢复。这不是超导体所做的:超导的金属自发产生一个表面电流,从而从其内部排出磁场[3]。这似乎违反了法拉第定律。BCS理论既没有基于电子 - 波相互作用,于1957年由Bardeen,Cooper和Schrieffer [7]提出。对于其余三分之二,没有公认的理论。伦敦兄弟[1,6]于1935年提出的伦敦方程式提供了对超导体的磁性行为的现象描述,但并未解释supoducducdors如何设法违反法拉第定律。bcs理论提供了超导体的显微镜描述,该描述准确地描述了其许多特性,通常认为它适用于称为“常规超导体”的材料,其中包括所有超导元件和许多化合物。大约有30种不同类别的超导材料[8],其中大约三分之一被同意为“常规超导体”。该领域是开放的,以进一步进步。