量子点中限制的电子和空穴为量子涌现、模拟和计算定义了极好的构建块。硅和锗与标准半导体制造兼容,并且含有具有零核自旋的稳定同位素,因此可作为具有长量子相干性的自旋的极好宿主。在这里,我们展示了硅金属氧化物半导体 (SiMOS)、应变硅 (Si/SiGe) 和应变锗 (Ge/SiGe) 中的量子点阵列。我们使用多层技术进行制造以实现紧密限制的量子点并比较集成过程。虽然 SiMOS 可以从更大的温度预算中受益,而 Ge/SiGe 可以与金属形成欧姆接触,但定义量子点的重叠栅极结构可以基于几乎相同的集成。我们首次在 Ge/SiGe 中实现了每个平台的电荷感应,并展示了功能齐全的线性和二维阵列,其中所有量子点都可以耗尽到最后的电荷状态。在 Si/SiGe 中,我们使用 N + 1 方法调谐五重量子点,以同时达到每个量子点的少数电子状态。我们比较了电容串扰,发现 SiMOS 中的电容串扰最小,这与量子点阵列的调谐相关。我们将这些结果应用于量子技术,并将工业量子位、混合技术、自动调谐和二维量子位阵列确定为四个关键轨迹,当它们结合在一起时,可以实现容错量子计算。
作者的完整列表:Elisa Castagnola;匹兹堡大学生物工程;圣地亚哥州立大学工程学院Thongpang,Sanitta;华盛顿大学,电气与计算机工程系,康复医学,生理学与生物物理学Hirabayashi,Mieko;圣地亚哥州立大学,纳米牛布。SDSU实验室,乔治机械工程系;加利福尼亚大学河滨大学,机械工程deparment,材料科学与工程计划Nimbalkar,Surabhi;圣地亚哥州立大学,纳米牛布。SDSU实验室,机械工程系Nguyen,Tri;圣地亚哥州立大学,纳米牛布。SDSU实验室,桑德拉机械工程系;圣地亚哥州立大学,纳米牛布。SDSU实验室,Alexis机械工程系;圣地亚哥州立大学,纳米牛布。SDSU实验室,詹姆斯机械工程部Bunnell;圣地亚哥州立大学,纳米牛布。SDSU实验室,机械工程系Moritz,Chet;华盛顿大学电气与计算机工程系,康复医学以及生理学与生物物理学Kassegne,Sam;圣地亚哥州立大学,纳米牛布。SDSU实验室,机械工程系
1个新加坡639798 Nanyang Ave 639798的Nanyang Technological University,Nanyang Technological University的电气和电子工程学院微型和纳米电子和电子工程学院(CMNE); chunfei001@e.ntu.edu.sg(c.f.s.); e190013@ntu.edu.sg(l.y.x.l.); chongwei@ntu.edu.sg(c.w.t.); lxhu@ntu.edu.sg(L.H.); tancs@ntu.edu.sg(c.s.t.)2 CNRS-NTU-THALES研究联盟/UMI 3288,研究技术广场,50 Nanyang Ave,边界X块,6级,新加坡637553,新加坡; jxwang@ntu.edu.sg(J.W.); simon.goh@ntu.edu.sg(s.c.k.g.); philippe.coquet@cnrs.fr(p.c.); ehongli@ntu.edu.sg(H.L.)3 Institut d'Electronique, de Micro Electronique et de Nanotechnologie (IEMN), CNRS UMR 8520-Universit é de Lille, 59650 Villeneuve d'Ascq, France 4 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore * Correspondence: ebktay@ntu.edu.sg†两位作者对此手稿都同样贡献。
(a)在Maestro MEA™系统上将Brainphys™神经元介质(目录#05790)培养的HPSC衍生的神经元(目录#05790)铺平。(b)神经元在15周内发挥电活性,从第8周增加到第16周的平均点火率逐渐增加。(c)栅格图在不同时间点显示了64个电极上神经元的发射模式。每条黑线代表一个检测到的尖峰。每条蓝线代表一个单个通道突发,收集至少5个尖峰,每个峰值由ISI≤100ms分隔。每个粉红色框都表示网络爆发,这是整个井中至少25%参与电极的至少10个尖峰的集合,每个电极的ISI≤100ms。在Brainphys™神经元培养基中培养的神经元表现出电活动,如随着时间的推移的增加所示。此外,网络爆发频率也增加了,这表明随着神经元的成熟,神经元的发射逐渐组织成同步网络爆发。isi =跨度间隔
•用于神经记录和刺激的自定义电极阵列体系结构•模拟和数字电路设计•嵌入式系统•自定义ASIC开发•密封包装•无线数据传输•实验控制,数据采集的自定义软件开发,
如今,惯性传感器的运动估计已广泛应用于从飞机导航到可充气自行车头盔等各种应用领域。惯性传感器运动估计的精度取决于测量误差的大小。减少惯性传感器测量误差的一种方法是使用比运动估计所需更多的传感器。通过对冗余传感器的测量结果进行平均,可以减少独立误差的影响。但是,通过在刚体上放置多个惯性传感器,可以获得比简单平均更多的运动信息。例如,刚体的逐点加速度包含有关刚体旋转的信息。本论文研究并提出了如何融合惯性传感器阵列测量结果的方法,以及如何估计和校准传感器中存在的系统测量误差。惯性传感器阵列包含多个加速度计和多个陀螺仪。在运动估计应用中,通常从陀螺仪测量中估计角速度,然后将角速度积分为方向。角速度也可以从多个加速度计中估计。本论文提出了融合加速度计和陀螺仪测量的不同模型,以实现更准确的方向估计。通过提高方向的准确性
精确瞄准作战涉及直接行动和反网络活动,这些活动由特种部队独特的情报、技术和瞄准流程支持。精确瞄准作战可用于对付需要远程移动和谨慎使用武力的极其困难的目标集。它们可用于为其他行动争取时间和空间以获得牵引力,如反叛乱行动中所示。精确瞄准作战还通过蓄意瞄准关键敌方节点来瓦解跨区域威胁网络,如反恐战役中所示。
防空系统部已经开发出一种低成本平面天线 (LCPA) 概念,与目前的 CEC 阵列天线相比,该概念可大幅降低采购和生命周期成本。新的设计概念还提供了增强的舰载集成灵活性,并解决了与现有 CEC 天线相关的 DDG 51 安装挑战。该概念是一种四面平面阵列系统,采用低成本的商业阵列技术。已经设计、制造和测试了几个发射和接收模块以及一个小阵列部分,以证明 LCPA 概念的有效性。该概念已转交给 CEC 设计代理雷神公司,该公司目前正在开发 LCPA 设计,计划于 2003 年生产第一批产品,以支持 DDG 51 Flight II/IIa 安装,随后成为基线 CEC 舰载天线。
概念 当太空系统达到站点高度后,轻型 AESA 面板将展开以创建所需的辐射孔径尺寸。阵列辐射器的馈电机制是基于有源硅锗 (SiGe) 的塑料封装发射和接收模块网络。该阵列利用林肯实验室的专利减重技术,用于堆叠微带贴片天线阵列,大大减轻了典型阵列的重量,而不会对 RF 性能产生负面影响。
这些大型电极无法充分采样大脑活动 à 接触面积更小,时空分辨率更高!但为了获得更好的空间分辨率而将金属电极缩小到更小的直径会损害其记录能力。