MBenes 是二维 (2D) 材料中的一种新兴成员,因其独特的机械和电子特性以及多样化的晶体对称性和结构而备受关注,这些特性使其成为不同类型应用的有希望的候选材料 [1, 2]。然而,原始 MBenes 的固有金属性质可能会成为光学领域中涉及光子吸收、发射和电子学的多种应用的障碍。在半导体材料中,带隙是最重要的参数,人们投入了大量精力来寻找具有广泛带隙的新型纳米材料。虽然 MBenes 通常表现出金属行为,但可以通过能带工程将其调整为半导体。在这项工作中,ScB MBenes 的电子能带结构已利用表面功能化和应变电子学等能带工程技术进行了修改。我们研究了 ScB MBenes 的各种晶体对称性,并检查了它们的结构和动态稳定性。我们的结果表明,具有六方晶体对称性的 ScB 是最稳定的。我们已经研究了具有 O-、F-、OH- 和 H- 官能团的 ScB 的电子结构,并且能带结构计算表明,用 O 官能化的 ScB 在 DFT+U 和混合交换关联函数 HSE06 中分别具有约 0.1 eV 和 0.5 eV 的半导体带隙。除了用 O 官能化之外,施加的平面双轴应变还使带隙进一步增大了 0.8 eV。这可以使 ScBO MBene 充分利用电子、光学和其他多种应用。
异丙嗪(PHZ)被用作兽医中的镇静剂,其残留物可能威胁到人类的健康。PHz的电化学检测是适合在该领域应用的方法。然而,由于基质干扰,传统的电分析很难直接在肉样品中进行。这项工作将磁性固相提取和差异脉冲伏安法整合,以高度敏感和选择性地确定牛肉和牛肉肝脏中的PHZ。COFE 2 O 4 /用C 18功能化的介孔二氧化硅(mg@msio 2 -c 18)涂有含量的石墨烯,合成为分散的磁吸附剂以提取Phz。用氮掺杂的空心碳微球(HCM)修饰的磁性玻璃碳电极通过PHz吸引Mg@MSIO 2 -C 18,并直接检测PHZ而无需洗脱程序。mg@MSIO 2 -C 18可以分离PHz,以避免杂质在引起检测时的干扰,并在磁电上集中PHZ。此外,使用HCM的电极修饰可以扩增PHz的电化学信号。最后,集成的PHZ测定方法表现出较宽的线性范围从0.08μmol/L到300μmol/L,检测到9.8 nmol/l的低极限。牛肉样品分析提供了出色的恢复,这表明该方案有望在真实肉类样本中快速和现场检测PHZ©2023©2023由Elsevier B.V.代表中国化学学会和中国医学学院的Materia Medica Institute,中国医学科学院出版。
在文本的其余部分中。(2)一个新的OHAPTER T> n'分类和NOMENALITAL'介绍了命名所有有机oompounds的命名的LA.检验lup ac 〜Semit。根据“官能团体资历”的命名较高的有机量。(3)一些现代主题,例如在Vaouum,Cbromotography,氧气下升华。bask估计卤素!的方法,给出了氧气的直接估计。(4)有机化合物的光谱尤其是Ul〜ra。(5)光学同层的降落是现代的触觉,它和s crections the the dls'cluss.ed详细介绍了。
b'sandwich排列,其中包含捕获目标 - 信号探针。随后通过监测观察到的亚甲基蓝(MB)的峰值电流变化来检测所得的DNA杂交事件,该峰值电流变化被用作氧化还原物种,并实现了35 AM的检测极限。Wang等。 [5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。 [6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。 Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Wang等。[5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。[6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Chen等。[7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Zhou等。[8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。在另一项研究中,Zhang等人。[9]为特定序列检测制造了无标记的DNA传感器。将DNA固定在用石墨烯,Aunps和Polythionine(Pthion)修饰的玻璃碳电极上。通过不同的脉冲伏安法检测到杂交,并且在0.1 pm至10 nm的动态范围内达到了35 fm的检测极限。Bo等人开发了石墨烯和聚苯胺的电化学DNA生物传感器。[10]用于DPV检测辅助DNA序列,并达到了'
。▪2016年7月至9月:被邀请到堪培拉的澳大利亚国立大学。▪2012年7月:耶拿的Abbe Photonics教授邀请教授。▪2011年8月:马萨诸塞州理工学院的邀请教授。▪2010-2012:布雷西亚大学信息工程系主任。▪2010年7月至9月:马萨诸塞州理工学院邀请教授。1998–2003:布雷西亚大学自动电子系工程学院的副教授(科学纪律部门INF/02)。1994-1998:帕多瓦大学电子与计算机科学系工程学院的大学研究员(学科科学部门K02X)。founces 1996-1997:研究人员邀请了法国利多士大学的IRCOM(光学通信研究所和微波研究研究所)。1993–1994:美国新墨西哥大学(美国)的数学与统计系“访问研究讲师”。<89 div>教育:帕多亚大学电子工程学荣誉学位(学位论文:“光纤中的拉曼散射”。主管:C.G。教授有些人)。1990-1993:博士学位帕多亚大学的电子工程和电信(“纤维和波导中的全光开关”。主管:C.G。教授有些人)。1992年:帕多亚大学授予国外奖学金。1992年:帕多亚大学授予国外奖学金。1978年的保费和奖学金:X Philips for for X Philips for for X Philips for for for X Philips for for for X Philips for for for for X Philips for for for for for X Philips for for for for for X Philips for for for for for X Philips for for for for for X Philips年轻研究人员。1989年:意大利电信公司(SIP)的奖项在帕多亚大学获得了1989年最佳学位论文。 1991年:A。Gini基金会作为亚利桑那大学的访客学生奖。 2017:任命OSA(光学社会)的同胞“对离散和期刊非线性光子结构的重要贡献,以及纳米 - 安南纳斯和非线性纳米纳米官能设备的设计”。1989年:意大利电信公司(SIP)的奖项在帕多亚大学获得了1989年最佳学位论文。1991年:A。Gini基金会作为亚利桑那大学的访客学生奖。 2017:任命OSA(光学社会)的同胞“对离散和期刊非线性光子结构的重要贡献,以及纳米 - 安南纳斯和非线性纳米纳米官能设备的设计”。1991年:A。Gini基金会作为亚利桑那大学的访客学生奖。2017:任命OSA(光学社会)的同胞“对离散和期刊非线性光子结构的重要贡献,以及纳米 - 安南纳斯和非线性纳米纳米官能设备的设计”。
有针对性的输送系统:靶向输送系统,例如配体官能化的纳米颗粒或微粒,使特定于粘膜组织的部位递送。通过将靶向配体(例如抗体或肽)结合到药物载体中,靶向配方可以选择性地与在粘膜表面表达的受体结合,从而提高药物定位和功效。尽管能够在传播药物输送方面进步,但仍有一些挑战,包括粘膜生理的变异性,与渗透增强剂相关的安全问题以及监管困难。未来的研究工作应着重于通过开发安全有效的配方,高级交付技术以及针对个人患者需求定制的个性化方法来应对这些挑战。
基于Au纳米颗粒(NPS)的新型杂化纳米复合材料的胶体合成,通过– rating在1-氨基吡啶(AP)功能官能化的氧化石墨烯(RGO)上堆叠进行了优化,以探索实验参数对最终纳米结构的影响的影响。所得的纳米复合材料在有机溶剂中表现出可分散性,以修饰筛网碳电极。电化学分析揭示了多巴胺检测能力。AP链接器促进了NP-RGO电子耦合,影响电导率和AU NP大小依赖性电分析活性。混合纳米植物对多巴胺的确定表现出了优越的电效率,展示了现代医学中护理生物标志物监测的潜力。
反应性氧化物(ROS)对活细胞生存能力和增殖的影响很多。由于它们与不同类型的生物分子反应的能力,ROS参与了许多细胞功能1。维持氧化还原稳态的能力至关重要,失衡会导致各种可能的疾病。可以利用受控的ROS产生以产生细胞中的氧化应激,导致细胞死亡,目的是开发用于抗癌治疗的药物和无药物治疗工具。氨基丙基官能化的ZnO NC(ZnO-NH 2 NC)被证明可以使用已批准的医疗设备Lipozero G39刺激超声(US)时,能够以可调且可重复的方式产生ROS。羟基自由基的产生是美国暴露下惯性空化的结果。
maggie@lingenfelder-lab.com从简单的愿望到“看到原子”到探索绿色能源应用的电子旋转的旅程,这反映了我们对过去几十年来原子和亚原子世界的理解时的深刻进步。这些进步不仅在智力上令人满意,而且具有应对全球挑战的潜力,例如可持续能源。在我们的研究小组中,我们通过创建自定义的纳米结构材料来应对可持续能源的挑战,从而从自然界(生物仿生)中汲取灵感,从而整合了界面化学和表面物理学的基本原理。在此演示文稿中,我在光合作用过程中汲取灵感,以设计驱动电催化能量转换过程的土壤丰富的材料:例如CO 2电源和水分裂。使用尖端扫描探针显微镜使我们能够通过原位成像可视化纳米级的动态电化学过程[1]。我们收集的详细原子尺度信息激发了我们的进一步探索:使用利用电子旋转来增强电催化转换过程的非常规策略[2-4]。这种创新的方法使我们能够开发出最先进的材料,这些材料的电催化效率高两到三倍[3-4]。参考文献[1] Hai Phan,T.,Banjac,K.,Cometto,F。等。在Operando CO2电气中,电势控制的Cu-nanocuboid和石墨烯覆盖的Cu-nanocuboid的出现。纳米莱特2021 21,2059-2065。[2] Vensaus,P.,Liang,Y.,Ansermet,JP。等。通过磁场对质量传输的影响增强电催化。自然社区。2024,15,2867。[3] Liang,Y.,Banjac,K.,Martin,K。等。通过手性分子官能化杂交2D电极的手性分子官能化增强了电催化氧的进化。自然公共2022,13,3356。[4] Y. Liang,M。Lihter,M。Lingenfelder,用于清洁能量的电催化中的自旋控制。isr。J. Chem。 2022,62,e202200052。J. Chem。2022,62,e202200052。