人工智能生命周期。资料来源:政府人工智能指南:美国联邦政府、GSA、卓越中心人工智能应用的动态和发展指南。https://coe.gsa.gov/coe/ai-guide-for-government/understanding-managing-ai-lifecycle/index.html 了解和管理人工智能生命周期 | GSA
异常定位,目的是将图像中的异常区域分割出来,这是由于种类繁多的异常类型而具有挑战性的。现有方法通常是通过将整个图像作为整体而却很少付出的努力来学习局部分布来训练深层模型,这对于这项Pixel Prescerise任务至关重要。在这项工作中,我们提出了一种基于补丁的方法,可以适当考虑全球和本地信息。更具体地说,我们采用本地网络和全球网络分别从任何单个贴片及其周围来提取特征。全球网络经过训练,其目的是模仿本地功能,以便我们可以从上下文中轻松检测其功能不匹配时。我们进一步引入了不一致的异常检测(IAD)头和一个失真异常检测(DAD)头,以足够的时间发现全球和局部特征之间的差异。源自多头设计的评分函数有助于高精度异常定位。在几个现实世界数据集上进行了广泛的实验表明,我们的方法优于最大的竞争对手,而竞争对手的差距足够大。
局域性无疑是量子理论和广义相对论不可分割的一部分。另一方面,像 AdS/CFT 这样的全息理论意味着,在边界理论中,体量子引力自由度被编码在空间无穷远处。尽管这种说法是在非微扰层面上的说法,但在量子引力的微扰极限中,这种性质仍然存在。这主要是由于引力高斯定律,它使我们无法定义严格的局部算子。由于在描述中包含引力要求理论在坐标变换下不变,因此物理算子需要是微分同胚不变的。高斯定律实现的这一条件要求算子被修饰到边界,并包含一个延伸到无穷远处的引力版本的威尔逊线,因此要求它们是非局部的。为了解决这一矛盾,我们提出了候选算子,它们可以绕过这一要求,同时在 AdS/CFT 环境中具有局部和微分同胚不变性。这些算子仍然满足引力高斯定律的一个版本,因为它们被解释为相对于状态的特征进行修饰。因此,这些算子所定义的状态是破坏理论对称性并具有“特征”的状态。这些状态通常是具有大方差的高能状态,对应于块体中非平凡的半经典几何。该提议还将有助于解决有关岛屿提议的悖论。此外,这使得人们能够在微扰量子引力中更具体地讨论子区域、其相关子系统和信息局部化。在第二部分中,我们将主要关注称为 AdS-Rindler 楔形的块体子区域。我们将使用从量子信息和量子计算界借用而来的 Petz 映射,从其边界对偶子区域明确地重建该体子区域。这与先前关于体子区域重建的猜想以及由于引力的量子误差校正性质,Petz 映射可用于重建纠缠楔的提议相一致。此外,我们精确研究了 AdS Rindler 楔中的算子代数,包括体和边界对偶。使用交叉积构造和一种新的重正化 Ryu Takayanagi 表面的方法,我们展示了如何通过包括引力校正将代数修改为更易于管理的代数,我们可以在其中定义密度矩阵和冯诺依曼熵。最后,在存在引力相互作用的情况下,我们研究了一般背景下算子代数的一种特殊表示,称为协变表示。这种表示将从物理角度阐明交叉乘积构造的含义。
CRISPR-CAS诱导的同源指导修复(HDR)可以通过外源供体模板安装广泛的精确基因组修饰。然而,HDR在人类细胞中的应用通常受到差异差的效率阻碍,这是由于偏爱易于容易产生的途径而产生短插入和缺失的途径。在这里,我们描述了递归编辑,这是一种HDR改进策略,该策略有选择地重新制定不希望的Indel结果,以创造更多的机会来生产所需的HDR等位基因。我们介绍了一个名为Retarget的软件工具,该工具可以使递归编辑实验的合理设计。在单个编辑反应中,使用重编设计的指南RNA,递归编辑可以同时提高HDR效率并减少不希望的indels。我们还利用重新定位来生成数据库,以特别有效地递归编辑位点,以内源性标记蛋白质并靶向致病性突变。递归编辑构成了一种易于使用的方法,而没有潜在的细胞操作,也很少增加实验负担。
精确的脉冲定时和时间编码在昆虫的神经系统和高阶动物的感觉外围中得到广泛应用。然而,传统的人工神经网络 (ANN) 和机器学习算法无法利用这种编码策略,因为它们的信号表示是基于速率的。即使在人工脉冲神经网络 (SNN) 的情况下,确定时间编码优于 ANN 的速率编码策略的应用仍然是一个悬而未决的挑战。神经形态传感处理系统为探索时间编码的潜在优势提供了理想的环境,因为它们能够从相对脉冲定时中有效地提取聚类或分类时空活动模式所需的信息。在这里,我们提出了一个受沙蝎启发的神经形态模型来探索时间编码的好处,并在基于事件的传感处理任务中对其进行验证。该任务包括仅使用八个空间分离的振动传感器的相对脉冲定时来定位目标。我们提出了两种不同的方法,其中 SNN 以无监督的方式学习聚类时空模式,并展示了如何通过分析和多个 SNN 模型的数值模拟来解决该任务。我们认为,所提出的模型对于使用精确脉冲时间进行时空模式分类是最佳的,可以用作评估基于时间编码的事件感知处理模型的标准基准。
我们引入了一种新算法,称为 PPA(性能预测算法),该算法可以定量测量神经系统元素对其执行任务的贡献。根据一小组病变中性能下降的数据,该算法可以识别参与认知或行为任务的神经元或区域。它还可以准确预测由于多元素病变导致的性能。新算法的有效性在两个具有元素间复杂相互作用的循环神经网络模型中得到了证明。该算法可扩展并适用于大型神经网络的分析。鉴于可逆失活技术的最新进展,它有可能对理解生物神经系统的组织做出重大贡献,并阐明关于大脑局部计算与分布式计算的长期争论。
这项研究研究了Lyapunov的传播,吸收和结构障碍之间的动态关系,以利用光子晶体中的定位现象。我们研究系统的系统,其中一个双层引入障碍的重分索引的随机变化,而缺陷层具有与λ型原子的不均匀掺杂,并且可以使有效的折射指数的相干调节。相干控制允许在无序方案中积极调整吸收,Lyapunov指数和定位特征。在吸收和lyapunov spec中,对于带隙和带缘频率观察到了显着的对比,突出了不同的定位行为。这些发现提高了对无序系统中光 - 物质相互作用和现场定位的理解,为定制的光子设备提供了途径。
本文说明了脑电图(EEG)数据的两个有效源定位算法的开发,旨在增强实时大脑信号重建,同时解决传统方法的计算挑战。准确的EEG源定位对于在认知神经科学,神经康复和脑部计算机界面(BCIS)中的应用至关重要。为了在精确的源方向检测和改进的信号重建方面取得重大进展,我们介绍了加速的线性约束最小方差(ALCMV)波束形成工具箱和加速的大脑源方向检测(AORI)工具箱。ALCMV算法通过利用递归协方差矩阵计算来加快EEG源重建,而与常规方法相比,AORI将源方向检测从三个维度简化了66%。使用模拟和实际脑电图数据,我们证明了这些算法保持高精度,方向误差低于0.2%,并且信号重建精度在2%以内。这些发现表明,所提出的工具箱代表了脑电图源定位的效率和速度的重大进步,使其非常适合实时神经技术应用。
摘要 - 准确的定位在高级自主驾驶系统中起重要作用。传统地图匹配的本地化方法通过具有传感器观测值的明确匹配的地图元素来解决姿势,通常对感知噪声敏感,因此需要昂贵的超级参数调整。在本文中,我们提出了一个端到端定位神经网络,该神经网络直接估计车辆从周围图像中构成,而没有与HD图明确匹配的感知结果。为确保效率和可预性能力,提出了一个基于BEV神经匹配的姿势求解器,估计在基于可区分的采样匹配模块中估计姿势。此外,通过将每个姿势DOF影响的特征表示形式解耦来大大降低采样空间。实验结果表明,所提出的网络能够执行分解器水平的定位,平均绝对误差为0.19m,0.13m和0.39◦在纵向,横向位置和偏航角度,同时表现出68.8%的推理记忆使用率降低了68.8%。