近年来利用CRISPR-Cas9系统构建的二倍体作物突变体文库为功能基因组学和作物育种提供了丰富的资源,然而由于基因组的复杂性,在多倍体植物中实现大规模的定点诱变是一项巨大的挑战。本文证明了利用混合CRISPR文库在异源四倍体油菜中实现基因组规模定点编辑的可行性。共设计了18,414个sgRNA来靶向10,480个目的基因,得到了1104株含有1088个sgRNA的再生转基因植株。编辑询问结果显示,178个基因中93个被鉴定为突变,编辑效率为52.2%。此外,我们发现 Cas9 介导的 DNA 切割倾向于在由同一个 sgRNA 引导的所有靶位点发生,这是多倍体植物中的新发现。最后,我们展示了利用后基因分型植物对各种性状进行反向遗传筛选的强大能力。从正向遗传研究中发现了几个可能主导脂肪酸谱和种子油含量且尚未报道的基因。我们的研究为功能基因组学、优良作物育种提供了宝贵的资源,并为其他多倍体植物的高通量定向诱变提供了良好的参考。
CRISPR 原核防御系统 (Barrangou et al , 2007; Jinek et al , 2012) 的发现及其转化为有效且高效的基因组工程机制 (Cong et al , 2013; Mali et al , 2013; Ran et al , 2013) 的发现彻底改变了功能基因组学。CRISPR 技术依赖于将 RNA 引导的核酸内切酶靶向基因组内的特定序列位置。该系统已用于各种基因组修饰策略,包括基因敲除(通过错误修复断裂)和定点诱变(通过提高同源性定向修复的效率,在靠近断裂的基因组区域整合 DNA 模板)。在大多数应用中,将核酸酶准确靶向基因组位点比酶活性的特定核苷酸位置优先。虽然核酸酶工程化推动了该系统可支持的技术多样化(Pickar-Oliver & Gersbach,2019),但控制核酸酶靶向的分子规则保持不变;基因组地址编码在向导 RNA 序列 (gRNA) 中,该序列定义为位于原间隔区相邻基序 (PAM) 之前的 20 个核苷酸的基因组 DNA 片段。有大量的生物信息学工具可用
摘要 :癌症已成为全球重大的社会经济负担,每年有数百万新病例和死亡病例。生物工程这一前景广阔的领域最近取得了重大进展,为抗击癌症提供了新方法。在各种遗传工具的可用性和技术的快速进步的支持下,人们越来越关注对人类疾病分子机制的理解。这些发展使得最新的基因治疗技术能够用于癌症治疗,包括基因编辑、基因缺失和通过 TALEN、锌指、RNAi、CRISPR、定点诱变 (SDM) 和酶疗法等方法纠正缺陷基因以调节催化活性。此外,生物工程疫苗(如 mRNA 疫苗)、生物信息学、计算工具、人工智能 (AI)、纳米技术和化学疗法正在成为重要的癌症治疗策略。其中,基因编辑和基因治疗近年来特别受到关注,并经常与其他治疗方法结合使用。酶工程和纳米技术的进步也取得了重大进展。人工智能和生物信息学有助于更精确地诊断、预测和预后,从而实现癌症和肿瘤的个性化治疗。人工智能增强的成像和放射治疗改善了手术效果,即使是在偏远地区。精准肿瘤学已经出现,利用细菌和病毒直接针对肿瘤。在这篇评论中,我们讨论了各种癌症疗法的最新进展和挑战。
参考文献 (1) Sanchez-Leon, S., 等人 (2018)。利用 CRISPR/Cas9 改造的低筋非转基因小麦。Plant Bio J 16, 902-910。(2) Camerlengo, F., 等人 (2020)。利用 CRISPR-Cas9 多重编辑 α-淀粉酶/胰蛋白酶抑制剂基因以减少硬粒小麦中的过敏原蛋白。Front in Sust Food Syst 4, 104。(3) Dodo, HW., 等人 (2008)。利用基因工程缓解花生过敏:沉默免疫显性过敏原 Ara h 2 可显着减少其含量并降低花生的致敏性。Plant Bio J 6, 135-145。(4) Dodo, HW. (2021)。 SBIR 第二阶段:利用基因组编辑技术开发无过敏原花生。SBIR-STTR。(5) Sugano, S., 等人 (2020)。利用定点诱变技术同时诱导大豆中两种过敏原基因的突变等位基因。BMC plant biol 20, 1-15。(6) You, J., 等人 (2022)。CRISPR/Cas9 介导的芝麻 (Sesamum indicum L.) 高效靶向诱变。植物科学前沿 13。(7) Chang, Y., 等人 (2022)。强大的 CRISPR/Cas9 介导的 JrWOX11 基因编辑可操纵胡桃坚果树种的不定根和营养生长。Scientia Hort 303, 111199。
CRISPR-Cas 基因组编辑技术的最新进展使得在农作物中进行定点诱变和精确基因替换成为可能。CRISPR-Cas9 和 CRISPR-Cas12a 是两种主要且应用广泛的基因组编辑系统。然而,当 CRISPR-Cas12a 编辑机制从转基因中表达时,一些染色体靶标在玉米和大豆等重要作物中的编辑频率较低。本文,我们报告了一种有效的方法,即通过粒子轰击将 Cas12a-gRNA 核糖核蛋白复合物 (RNP) 递送到优良玉米品种的未成熟玉米胚中,直接生成基因组编辑系。通过将 Cas12a RNP 基因枪递送到未成熟胚中,在再生过程中未经任何选择,获得了约 7% 频率的基因组编辑系。令人惊讶的是,当 Cas12a RNP 与 PMI 选择标记基因盒共同递送并用甘露糖选择诱导愈伤组织培养物时,基因编辑率平均提高到 60%,在某些实验中甚至高达 100%。我们还表明,使用活性更高的 Cas12a 突变体可提高更难处理的靶序列的编辑效率。本文描述的进展为玉米的遗传改良提供了有用的工具。
摘要 :癌症已成为全球重大的社会经济负担,每年有数百万新病例和死亡病例。生物工程这一前景广阔的领域最近取得了重大进展,为抗击癌症提供了新方法。在各种遗传工具的可用性和技术的快速进步的支持下,人们越来越关注对人类疾病分子机制的理解。这些发展使得最新的基因治疗技术能够用于癌症治疗,包括基因编辑、基因缺失和通过 TALEN、锌指、RNAi、CRISPR、定点诱变 (SDM) 和酶疗法等方法纠正缺陷基因以调节催化活性。此外,生物工程疫苗(如 mRNA 疫苗)、生物信息学、计算工具、人工智能 (AI)、纳米技术和化学疗法正在成为重要的癌症治疗策略。其中,基因编辑和基因治疗近年来特别受到关注,并经常与其他治疗方法结合使用。酶工程和纳米技术的进步也取得了重大进展。人工智能和生物信息学有助于更精确地诊断、预测和预后,从而实现癌症和肿瘤的个性化治疗。人工智能增强的成像和放射治疗改善了手术效果,即使是在偏远地区。精准肿瘤学已经出现,利用细菌和病毒直接针对肿瘤。在这篇评论中,我们讨论了各种癌症疗法的最新进展和挑战。
大豆突变体 lox3 具有 Lox3 基因座中的突变等位基因,是利用 CRISPR/Cas9 系统通过定点诱变生成的。为了评估种子中 LOX3 活性降低的影响,检测了 lox3 在温度胁迫下的发芽能力。在所有温度条件下,lox3 种子都比野生型种子发芽更早。随着温度的升高,这种差异变得更加明显。随后,为了模拟种子的长期储存,通过将种子暴露在高温高湿条件下进行老化处理。虽然大多数野生型种子在老化处理后没有发芽,但大约 80% 的 lox3 种子发芽了。这表明 LOX3 活性的降低导致种子对长期储存的耐受性增强。为了阐明生理机制,对老化处理后的种子进行了测量,测量了通常用于评估脂质过氧化的丙二醛 (MDA) 含量。lox3 样品中的 MDA 含量低于野生型样品。这一结果表明 lox3 种子中的脂质过氧化降低了。为了评估基因表达水平,对 lox3 和野生型样本进行了转录组分析。转录组分析显示,野生型种子中应激反应基因的表达增加。这表明野生型种子比 lox3 种子受到的应激更严重。因此,我们证明种子中 LOX 活性的降低可能即使在高温胁迫或种子长期储存下也能保持发芽能力。日本大豆蛋白研究 23,35-40,2020。
成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 系统已广泛应用于多种物种的靶向基因组修饰。它是一种强大的基因组编辑技术,为基因功能研究和分子育种提供了显著的益处。然而,到目前为止,还没有研究将这种基因组编辑工具应用于芝麻 (Sesamum indicum L.),芝麻是最古老和最重要的油料作物之一,广泛用于食品和医药等多个行业。在此,CRISPR/Cas9 系统与毛状根转化一起被用于诱导芝麻的靶向诱变。设计了两个单向导 RNA (sgRNA) 来靶向两个芝麻细胞色素 P450 基因 (CYP81Q1 和 CYP92B14),它们分别是芝麻素和芝麻林的关键生物合成基因。测序数据显示目标位点发生了预期的 InDel 突变,CYP81Q1 和 CYP92B14 的突变频率分别为 90.63% 和 93.33%。最常见的编辑事件是单核苷酸缺失和插入。对 CYP92B14 -sgRNA 潜在脱靶位点的测序表明,在三个错配的情况下均未发生脱靶事件。高效液相色谱分析表明,突变的毛状根中芝麻素和芝麻林林的生物合成被有效破坏,证实了 CYP81Q1 和 CYP92B14 在芝麻木脂素生物合成中的关键作用。这些结果表明 CRISPR/Cas9 系统可以有效地实现定点诱变,并且 CRISPR/Cas9 结合毛状根转化是评估芝麻基因功能的有效工具。
稻米的香味是决定其可接受性和市场竞争力的关键品质性状。对稻米香味的深入研究发现,甜菜碱醛脱氢酶(OsBADH2)的突变导致稻米产生香味。CRISPR/Cas9 系统等基因编辑技术为通过定点诱变加速改善稻米品质开辟了新途径。在本研究中,我们利用 CRISPR/Cas9 工具创建 OsBADH2 的新等位基因,从而将香味引入优良非芳香水稻品种 ASD16。使用针对 OsBADH2 第 7 外显子中 sgRNA 侧翼区域的引物对假定的转化子进行 PCR 分析,发现 T 0 代中有 37.5% 的潜在多等位基因突变。对 T 0 系叶片进行感官评价测试,鉴定出属于五个独立产生香味事件的十三个系。这些芳香 T 0 系的序列分析确定了 22 种不同类型的突变,这些突变位于 sgRNA 区域的 -17 bp 至 +15bp 范围内。品系 #8-19 中的 -1/-2 bp 缺失和品系 #2-16 中的 -8/-5 bp 缺失产生了强烈的香气,并且该表型在 T 1 代中稳定遗传。比较挥发性谱检测发现品系 #8-19 的 T 1 子代谷粒中存在新的芳香化合物,即吡咯烷、吡啶、吡嗪、吡嗪和吡唑。这项研究证明了使用 CRISPR/Cas9 创造 OsBADH2 的新等位基因可将香气引入任何非芳香水稻品种。
第 1 部分:生命的组织;水的重要性;生物分子的结构和功能:氨基酸、碳水化合物、脂质、蛋白质和核酸;蛋白质的结构、折叠/错误折叠和功能;肌红蛋白、血红蛋白、溶菌酶、核糖核酸酶 A、羧肽酶和糜蛋白酶。第 2 部分:酶动力学、调节和抑制;维生素和辅酶;生物能量学和代谢;ATP 的生成和利用;代谢途径及其调节:糖酵解、TCA 循环、戊糖磷酸途径、氧化磷酸化、糖异生、糖原和脂肪酸代谢;含氮化合物的代谢:氮固定、氨基酸和核苷酸。光合作用、卡尔文循环。第 3 部分:生化分离技术:离子交换、尺寸排阻和亲和色谱法、离心;通过电泳表征生物分子;DNA-蛋白质和蛋白质-蛋白质相互作用;紫外可见光谱和荧光光谱;质谱法。第 4 部分:细胞结构和细胞器;生物膜;动作电位;跨膜运输;膜组装和蛋白质靶向;信号转导;受体-配体相互作用;激素和神经递质。第 5 部分:DNA 复制、转录和翻译;DNA 损伤和修复;基因表达的生化调控;重组 DNA 技术和应用:PCR、定点诱变、DNA 微阵列;下一代测序;基因沉默和编辑。第 6 部分:免疫系统:先天性和适应性;免疫系统细胞;主动和被动免疫;补体系统;抗体的结构、功能和多样性;B 细胞和 T 细胞受体;B 细胞和 T 细胞活化;主要组织相容性复合体;免疫学技术:免疫扩散、免疫电泳、RIA 和 ELISA、流式细胞术;单克隆抗体及其应用。