• 空客的人为因素被视为一项关键能力,由位于相关领域的专家团队负责。 • 客舱和货运人为因素团队的任务是 • 确保我们的客舱和货运产品和服务满足用户(机组人员和乘客)的需求和期望,以及 • 为客户(航空公司)提供最高运营效率。 • 该团队由涵盖各个学科(人体工程学、心理学、航空医学、工程学、可用性)的专家组成。
因其形状而消耗更少的能量(https://www.tudelft.nl/lr/flying-v/)。目前,航空运输约占人类活动每年产生的 360 亿吨二氧化碳的 2%(https://www.cleansky.eu/benefits),这表明需要开发一种更省油的飞机。这款 Flying V 最初是柏林工业大学学生 Justus Benad 在汉堡空客的毕业论文项目中提出的构想(https://www.tudelft.nl/lr/flying-v/)。在 Flying V 中,客舱、货舱和油箱都集成在机翼结构中。Flying V 搭载的乘客数量与空客 A350 大致相同,这是这款新飞机的基准。Flying V 比 A350 小,与可用体积相比,湿润表面积更小。结果阻力更小,从而导致相同距离所需的燃料更少。目前,Flying V 正在开发中使用传统煤油发动机,但也会研究其他推进方式,如氢或电子煤油,但这不是本研究的目的。
本文讨论了轻型飞机座舱的主动噪声控制系统。基本系统使用残差信号的相干平均法来产生驱动二次源的信号。该系统的高级版本使用有关噪声波形的先验信息,自适应过程从假设的波形开始(具有足够幅度、相位和频率的正弦信号,甚至低通滤波的参考噪声信号)。在测试单通道系统后,通过额外的模拟验证所实现的噪声抑制,其中考虑了实际飞机座舱的测量声学特性(以脉冲响应为特征)。系统可以扩展到 SIMO(单输入多输出)类型的多通道版本,其中相同的转速计/参考信号在经过足够的延迟(噪声信号通过座舱的声学传播)后驱动八个单通道系统,这些系统与多个增益延迟组合连接,以减少各个通道之间的串扰。
摘要:近年来,航空业在燃油消耗、维护和性能方面取得了重大技术进步。在燃油效率和排放最小化方面,最有希望的发展是未来几代涡轮螺旋桨飞机(即由螺旋桨产生推力的飞机)。涡轮螺旋桨飞机的一个重要缺点是它们的客舱往往更嘈杂,而且由于音调的存在,振动会导致不适程度增加。人的舒适感是飞机制造商在机身和飞机内饰设计中的关键因素。噪音和振动是飞机客舱不适的主要来源;因此,飞机制造商正在寻求根据噪音和振动测量来估计乘客的不适感,以优化飞机设计。本研究的目的是建立一个飞机舒适度模型,使设计师和工程师能够优化乘客的旅行体验。本文介绍了一项实验室研究,确定了噪音和振动对涡轮螺旋桨飞机客舱的相对重要性。结果表明,随着噪音水平和振动幅度的增加,人体整体不适感也随之增加。提出了一种线性舒适度模型,可以通过测量涡轮螺旋桨飞机的噪音和振动来预测整体不适感,从而优化飞机客舱。
为了比较呼吸道病原体的传播,我们进行了计算流体动力学 (CFD) 模拟,以追踪波音 737 飞机上的乘客和类似室内商业空间中的人咳嗽时释放的颗粒。对模拟数据进行后处理,以计算两种环境中附近人员吸入的颗粒量。还分析了不同气流速率、进气口位置、指示者 (咳嗽) 和易感者 (吸入) 之间的定位和距离的影响。将室内环境中空气中颗粒的去除、通风和表面沉积与飞机客舱进行了比较。在飞机客舱中,80% 的颗粒去除速度比室内商业空间快 5 到 12 倍;最终导致飞机客舱中吸入的颗粒质量减少了 7 倍。简介
运营人必须确保,在载有一名或多名乘客时,直升机同一甲板上每 50 个乘客座位或其中一部分座位配备不少于一名客舱乘务员:但所搭载的最低客舱乘务员人数不少于实际参加 CAR 127.02.3 中提到的紧急撤离演示的客舱乘务员人数或被认为已参加直升机认证期间所需的相关分析的客舱乘务员人数。
超宽 22 英寸客舱座椅、电动窗帘、碳纤维 PSU 扶手和桌板、客舱座椅覆盖黑色 Edelman 皮革,配红色 Alcantara 内饰,Recon Black Ebony 客舱饰面
2 飞机客舱废物 8 2.1 客舱废物特点 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.5 澳大利亚 . ...
液压;刹车、襟翼、扰流板、方向舵、副翼、起落架泵 重量传感器 - 起落架 涡轮机;转速 (N1/N2)、进气口 - 涡轮压力、温度、燃油燃烧 电压表;驾驶舱、主总线、客舱、辅助电源、货物、发动机、APU 发电机仪表(发动机、APU) 电力负荷(安培/小时);驾驶舱、客舱、货物 火灾传感器;客舱、货物、发动机、燃油、刹车、电子设备舱 二氧化碳;客舱、货物 磁罗盘 GPS(卫星 / 地面) 无线电罗盘 (NDB) 多普勒雷达;天气、闪电、下沉气流(微下击暴流)
随着航空航天事业的快速发展,飞机的热舒适性受到越来越多的关注。然而客舱内环境与地面建筑环境有很大不同[4-6]。客舱环境的典型特征是低压、低湿度、缺乏新鲜空气和密封性要求高,每个乘客平均只有1至2 m 3 的空间[7],远远小于一般的办公环境。商用客机的巡航高度通常在5490 m至12500 m之间[8]。在这个高度,特别是在较高的海拔地区,大气的含水量很低。客舱中的水分主要来自乘客的汗液蒸发,因此客舱内的相对湿度通常低于20%[9]。这种低相对湿度会引起眼干、呼吸道阻塞等不适症状[10,11]。近期大量研究表明客舱个性化送风系统可有效改善旅客周围空气质量,有效降低旅客呼吸区污染物[12-15]。目前,关于地面建筑室内环境热舒适的相关研究及文献综述较多[16-18],但针对飞机客舱环境热舒适的研究较少。因此,本文试图对人体热舒适领域中与飞机客舱热舒适研究相关的工作进行总结。第二部分探讨了飞机客舱热舒适的影响因素,并从环境因素和人为因素两个方面介绍了近年来的研究进展。第三部分从均匀、稳态环境下的典型热感觉模型和非均匀、瞬态环境下的新型热感觉模型两个方面介绍了热感觉预测模型。第四部分介绍自适应热舒适的研究进展。第五部分介绍了飞机客舱热舒适性研究的进展及展望,主要介绍了飞机客舱通风的研究发展。