治疗大骨缺损仍然是没有完美解决方案的临床挑战,这主要是由于合适的骨植入物无法获得。添加性生产(AM)可吸收的多孔金属提供了无与伦比的机会,以实现对骨可能性植入物的挑战性要求。首先,可以定制这种植入物的多尺度几何形状,以模仿人骨的微体系结构和机械性能。相互联系的多孔结构还增加了表面积,以促进骨细胞的粘附和增殖。最后,它们的吸收特性是可以调节的,可以在整个骨骼愈合过程中维持植入物的结构完整性,从而确保在需要时确保舒适的负载,并在完成工作后完全分解。这种特性的组合为完整的骨再生和重塑铺平了道路。在开发理想的多孔可吸收金属植入物时,彻底表征生物降解行为,机械性能和骨再生能力很重要。我们回顾了由选择性激光熔化(SLM)生产的可吸收多孔金属的最新,重点是几何设计,材料类型,加工和后处理。后一个方面对吸收行为,由此产生的机械性能和细胞相容性的影响也将被讨论。与其坚固的惰性对应物相比,AM可吸收多孔金属(APM)显示出许多独特的特性,并具有巨大的潜力,以进一步优化其应用特异性性能,这是由于其灵活的几何设计。我们进一步强调了为将来的骨科解决方案采用AM APM时面临的挑战。
我们从理论和实验上研究了由具有 Dzyaloshinskii-Moriya 相互作用的倾斜反铁磁体共振引起的自旋泵浦信号,并证明它们可以产生易于观察的逆自旋霍尔电压。使用双层赤铁矿/重金属作为模型系统,我们在室温下测量反铁磁共振和相关的逆自旋霍尔电压,其值与共线反铁磁体一样大。正如对相干自旋泵浦的预期,我们观察到逆自旋霍尔电压的符号提供了有关模式手性的直接信息,这是通过比较赤铁矿、氧化铬和亚铁磁体钇铁石榴石推断出来的。我们的研究结果通过对具有低阻尼和倾斜矩的反铁磁体进行功能化,开辟了产生和检测太赫兹频率自旋电流的新方法。当代自旋电子学利用电子自旋进行信息处理和微电子学,主要基于铁磁器件架构。从提高数据处理速度和缩小片上信息处理规模的长远发展来看 [1],反铁磁体自旋电子学是一个很有前途的途径 [2]。与铁磁体相比,反铁磁体的关键优势在于它们的共振频率通过子晶格的交换耦合得到增强,因此通常在太赫兹范围内 [2,3]。然而,在补偿反铁磁体中,净矩的缺失严重阻碍了对其超快动力学的简单获取,尤其是在薄膜中,以及基于超快反铁磁体的器件的开发 [4,5]。因此,界面自旋输运现象可以为反铁磁体中的自旋弛豫过程和自旋动力学提供新的见解 [5–8]。
这是以下文章的同行评审版本:Brown, A. A. M., Damodaran, B., Jiang, L., Tey, J. N., Pu, S. H., Mathews, N. & Mhaisalkar, S. G. (2020). Lead halide perovskite nanocrystals : roomtemperature syntheses towards commercial viability. Advanced Energy Materials, 10(34), 2001349‑. https://dx.doi.org/10.1002/aenm.202001349,最终版本已发布于 https://doi.org/10.1002/aenm.202001349。本文可用于非商业用途,符合 Wiley 自存档版本使用条款和条件。
摘要:量子技术的全面发展需要易于制备的材料,在这些材料中可以有效地引发、控制和利用量子相干性,最好是在环境条件下。胶体生长的量子点 (QDs) 的固态多层膜非常适合这项任务,因为可以通过调节尺寸、点间连接器和距离来组装电子耦合 QDs 网络。为了有效地探测这些材料的相干性,需要对它们的集体量子力学耦合态进行动态表征。在这里,我们通过二维电子光谱探索了电子耦合的胶体生长的 CdSe QDs 的固态多层膜的相干动力学,并通过详细的计算对其进行了补充。在环境条件下捕获了多个 QD 上非局域化相干叠加态的时间演化。因此,我们为此类固态材料中的点间相干性提供了重要证据,为这些材料在量子技术中的有效应用开辟了新途径。■ 简介
众所周知,连贯的光是可实现的最稳定的经典光,它表现出泊松统计分布。shot噪声代表了这种固有的随机性的极限,并与使用pois-sonian光源发射的光子的时间分离相关。因此,一个更正常或次佛森的光子流揭示了基础辐射过程的量子性质。1在任何给定时间发出不超过一个光子的完美常规光源,称为单光子源(SPS),代表了各种量子技术的必不可少的构建块,包括量子计算方案,玻色子计算方案,玻色子采样,精确的Metrology,Precision Metrology,以及安全的通信应用以及量子密钥分布,例如量子密钥分布。2–6
1 摩尔多瓦技术大学微电子与生物医学工程系纳米技术与纳米传感器中心,168 Stefan cel Mare Av.,MD-2004,摩尔多瓦共和国基希讷乌 2 基尔大学材料科学研究所工程学院功能纳米材料,Kaiserstr。2,D-24143,基尔,德国 * 通讯作者:Oleg Lupan,oleg.lupan@mib.utm.md,Vasile Postica,vasile.postica@mib.utm.md 收到:04. 03. 2020 接受:05. 11. 2020 摘要。由于纳米传感器在气体传感领域的商业化尚处于起步阶段,因此人们做出了许多努力来开发有效的方法来提高其性能。特别关注的是使用不同策略提高基于单个微米或纳米结构的气体纳米传感器的灵敏度和选择性。在这项工作中,重点介绍和总结了摩尔多瓦技术大学纳米技术和纳米传感器中心与德国基尔大学合作的研究小组在高性能气体纳米传感器领域取得的最新成果。使用聚焦离子束/扫描电子显微镜 (FIB/SEM) 仪器将基于氧化锌的准一维 (1-D) 和三维 (3-D) 单个混合结构集成到纳米装置中。结果表明,单个 ZnO 结构的混合可显著提高气体响应,并改变对挥发性有机化合物和氨的选择性。具体来说,通过用 ZnAl2O4 纳米粒子进行表面功能化,氢气响应增加了约 2 倍,而分别用 Fe2O3 纳米粒子或巴克敏斯特富勒烯 (C60) 和碳纳米管 (CNT) 进行表面功能化,对乙醇蒸气和氨的选择性发生了变化。所获得的结果为通过使用具有增强的协同催化行为和势垒操纵的混合纳米材料系统合理设计气体纳米传感器提供了新途径。关键词:混合材料、纳米传感器、气体传感器、ZnO、室温。介绍纳米技术通过整合自下而上的方法而迅速发展,为基于纳米材料的高性能设备制造带来了真正的革命
摘要:磁性 skyrmion 是具有非平凡自旋拓扑和新颖物理特性的涡旋状自旋结构,有望成为新型自旋电子应用的基本构建块。长期以来,人们一直提出合成反铁磁体 (SAF) 中的 Skyrmion 比铁磁材料中的 Skyrmion 具有许多优势,而铁磁材料不受尺寸和有效操控的基本限制。因此,人们热切地追求在 SAF 中实验实现 skyrmion。在这里,我们展示了用洛伦兹透射电子显微镜在 SAF [Co/Pd]/Ru/[Co/Pd] 多层中在室温下观察到的零场稳定磁性 skyrmion,其中 SAF 的未补偿矩为 skyrmion 表征提供了媒介。分别通过磁场和电磁协调方法观察到了孤立的 skyrmion 和高密度 skyrmion。即使电流和磁场都被移除,这些产生的高密度 skyrmion 仍保持零场。在 SAF 中使用 skyrmion 将推动基于自旋拓扑的实用非易失性存储器的发展。关键词:skyrmion、合成反铁磁体、电磁协调方法、Ruderman − Kittel − Kasuya − Yosida 相互作用
图 2. S-QD 样品的 2DES 测量。(a)S-QD 样品在选定的布居时间 t 2 值下纯吸收 2DES 图的演变(图已标准化为 1)。虚线指出了激发激光轮廓覆盖的 1S 电子跃迁的位置。(b)和(c)在对角线(18500, 18500 cm -1 )坐标(圆圈)和非对角线(18900, 17200 cm -1 )坐标(正方形)提取的衰减轨迹与 t 2 的关系。黑色:实验数据;红色:从全局拟合分析获得的拟合轨迹。振荡残基报告在下面板中。(d)和(e)分别对图 (b) 和 (c) 中显示的衰减轨迹进行时间频率变换拍频分析。在拍频 1000 cm -1 处绘制一条灰色虚线,作为视觉引导。
b'在室温下,已证实 GaN 半导体中 1.5 \xce\xbc m 电信波长的稀土激光作用。我们已报道了在上述带隙激发下,通过金属有机化学气相沉积制备的 Er 掺杂 GaN 外延层产生的受激发射。使用可变条纹技术,已通过发射强度阈值行为作为泵浦强度、激发长度和光谱线宽变窄的函数的特征特征,证实了受激发射的观察。使用可变条纹设置,在 GaN:Er 外延层中已获得高达 75 cm 1 的光增益。GaN 半导体的近红外激光为光电器件的扩展功能和集成能力开辟了新的可能性。'
完整作者列表: 姜静;电子科技大学;休斯顿大学 朱航天;休斯顿大学 牛毅;电子科技大学 朱青;休斯顿大学 宋少伟;休斯顿大学 周婷;电子科技大学;休斯顿大学 王超;电子科技大学 任志锋;休斯顿大学