量子密码学是卫星与地面之间的一种新型密码学技术。量子密码学被认为在理论上是任何计算机都无法破解的,包括日本在内的许多国家都在努力发展量子密码学。这是一种新的密码技术,人们对其社会应用和国家安全寄予厚望。2020年1月,日本政府综合创新战略促进委员会公布了“量子技术创新战略”,将量子技术定义为与人工智能同等重要的战略技术。此外,还启动了一项建立量子创新滩头阵地的项目。量子技术的主要应用包括量子计算、量子传感和量子通信。通过与传统技术的融合和协作,量子技术有望在量子人工智能、
民用、国防和航天工业协同行动计划启动了欧盟新太空全球安全通信系统的开发工作。5 该倡议旨在开发一种新的多轨道连接系统,以补充 GOVSATCOM 初步服务。该系统的目标是提供集成、安全、自主且具有成本效益的政府连接,以支持关键基础设施保护、外部行动和危机管理、海上和空中监视等,并实现整个欧洲的高速宽带可用性。该倡议还将与 EuroQCI(量子通信基础设施)计划一起促进创新的量子密码技术。
2024 年 8 月,美国国家标准与技术研究所 (NIST) 迎来了关键时刻,发布了前三项最终确定的后量子密码 (PQC) 标准:FIPS 203、FIPS 204 和 FIPS 205。这些标准标志着密码学新时代的开始,旨在防范未来量子计算的威胁。在本次演讲中,NIST 密码技术组经理 Andrew Regenscheid 先生将详细介绍新制定的 FIPS PQC 标准。他还将讨论正在进行的标准化其他加密算法的努力,确保为当前标准中的潜在漏洞做好准备。网络安全工程师兼 NIST 国家网络安全卓越中心 (NCCoE) 项目负责人 Bill Newhouse 先生将解释过渡到这些新的抗量子加密标准的紧迫性。他还将分享实用策略和最佳实践,以促进从现有公钥加密系统向这些下一代标准的迁移。
随着脑机接口技术的快速发展,脑电信号作为一种新的生物特征识别特征近年来受到广泛关注,脑机接口的安全性以及生物特征认证长期以来的不安全性有了新的解决方案。本文对脑电信号生物特征识别进行了分析,并涉及到认证过程中的最新研究,主要介绍了基于脑电信号的认证方法,并首次系统地介绍了基于脑电信号的生物特征密码体制用于认证。在密码学中,密钥是密码体制中认证的核心基础,密码技术可以有效提高生物特征认证的安全性,保护生物特征。基于脑电信号的生物特征密码体制的可撤销性是传统生物特征认证所不具备的优势。最后提出了基于脑电信号的身份认证技术现存的问题和未来的发展方向,为相关研究提供参考。
本文的会议版本发表在第 48 届国际密码技术理论与应用会议 (EUROCRYPT 2019) 的论文集上。∗ 由 AFOSR YIP 奖项编号 FA9550-16-1-0495 和西蒙斯计算理论研究所的量子博士后奖学金资助。† 本工作部分是在 AG 加入 IRIF、CNRS/巴黎大学时进行的,在那里他得到了 ERC QCC 的支持,本工作部分是在 AG 加入 CWI 和 QuSoft 时进行的,在那里他得到了 ERC Consolidator Grant 615307-QPROGRESS 的部分支持。‡ 由 NWO Veni 创新研究基金 (项目编号 639.021.752) 资助; NWO Klein 资助项目编号为 OCENW.KLEIN.061;以及 CIFAR 量子信息科学计划。§ 由 NSF CAREER 资助项目 CCF-1553477、MURI 资助项目 FA9550-18-1-0161、AFOSR YIP 奖励编号 FA9550-16-1-0495 和 IQIM(NSF 物理前沿中心)(NSF 资助项目 PHY-1125565)以及戈登和贝蒂摩尔基金会(GBMF-12500028)提供支持。
摘要量子计算机的概念现在已经建立了良好。这是那里最尖端的技术,每个国家都在争夺量子至上。是将计算时间从数十年或几小时缩短的技术。获得量子计算功能将为科学界带来巨大的福音。它提出的问题是我们今天面临的最大的网络安全危险之一。为此,本文将首先向读者展示一些基本的量词后算法,然后详细介绍量子计算对现代密码学的影响。所有加密算法在理论上都容易受到攻击。当可以使用数十亿吨容量的商业量子计算机时,它们将能够解释几乎所有现有的公钥密码系统。使用公共密钥密码学已使安全在线交易的进行。然而,当今使用的最广泛使用的公共密钥加密技术的安全性受到量子计算机中突破的威胁。但是,量子密码学是一种有前途的技术,在实际的加密应用程序中被设定为广泛接受,因为即使在物理规则中允许的最一般的攻击中,它也已被证明是安全的。使用量子密码学,两个人可以建立在现有的秘密密钥上。为了实现这一目标,已经开发了几种量子密码技术。关键字:量子计算,量子理论,密码学和量子公共密钥分布,如果有必要采用这些算法,并概述了某些已开发的加密算法,否则,我们可能需要考虑协议设计人员可能需要考虑的一些担忧,尽管尚未广泛使用这些算法,但被认为对量子计算攻击具有抗性。
在罗马帝国时期,尤里乌斯·凯撒使用一种替换密码来编纂秘密信息,其中每个字符在字母表中向下移动三个位置,从而报告了使用密码技术保护机密信息的第一个历史证据之一 1。今天,信息社会每年传输 10 亿 TB 的数据,保护机密数据的隐私是一项全球性挑战 2,3。目前,大多数密码系统的安全性并不依赖于无条件证明,而是依赖于数学或概率陈述。主要思想集中在安全边际:如果使用 n 种资源破解了代码,则修改代码,例如将其密钥长度加倍,这样所需的资源就会呈指数增加。这种模型容易受到技术发展的影响,并且不能保护用户免受过去的攻击:攻击者可以存储今天发送的信息,并等待合适的技术以便明天破解消息。历史表明,这种情况有计划地发生在比预测更短的时间内。最著名的例子可能是恩尼格玛密码机的破解,恩尼格玛密码机是二战期间用来传输绝密军事信息的加密打字机。由于加密代码的基础组合数量众多,所以恩尼格玛密码机被认为是牢不可破的。尽管如此,这种安全猜想还是随着阿兰·图灵和他的同事们的工作而瓦解,他们通过设计第一台建筑计算机破解了恩尼格玛密码机,这台计算机一直秘密使用到二战结束 4 。在这个例子中,安全性被破解但没有公开披露,一方可以自由地侵入另一方的私人信息,完全不被注意。另一个例子是美国联邦数据加密标准 (DES),它被认为是安全的,因为一台足够快的机器可以破解它
量子计算是计算的未来,有望大幅提高处理能力;然而,它对现有的网络安全模式构成了威胁。经典加密技术,尤其是基于公钥加密的技术,在量子算法(如 Shor 算法)面前是不安全的,其中 RSA 和 ECC 等典型加密方案的使用将受到威胁。虽然在构建和开发量子计算机方面已经取得了大量研究成果,但后量子密码学 (PQC) 的重要性却变得更加突出。本文试图研究量子技术对当前加密方法构成的威胁以及正在研究的应对措施。我们这样做是为了评估量子计算的现状及其对数据安全的影响,以及学术和政府机构以及商业企业在开发抗量子密码学方面所做的工作。此外,本文概述了最有前途的后量子密码技术,包括格密码、基于哈希的签名、基于代码的密码系统和密码协议,这些技术正在被视为下一代密码协议。它还解决了与向后量子密码系统迁移相关的问题,包括标准化问题、兼容性问题和新算法的增长问题。此外,还提供了关于量子准备概念和及时实施网络防御计划以保护敏感数据和关键基础设施免受量子风险的规范性建议。最后,本文为开始向后量子领域过渡的组织提供了建议,包括使用混合密码系统和促进全球范围内对抗量子技术威胁的合作。关键词:量子计算机、网络安全、后量子密码、加密、肖尔算法、格密码、基于哈希的签名、基于代码的密码、密码协议、数据保护、量子威胁、混合密码解决方案、数字安全和安全量子-
摘要:随着物联网技术的发展,我们的生活中正在使用许多传感器设备。为了保护此类传感器数据,应用了轻质块密码技术,例如Speck-32。但是,还研究了这些轻型密码的攻击技术。块密码具有不同的特征,这些特征在概率上是可以预测的,因此已使用深度学习来解决此问题。自GOHR在加密货币2019年的工作以来,已经对基于深度学习的杰出者进行了许多研究。当前,随着量子计算机的开发,量子神经网络技术正在开发。量子神经网络也可以像经典的神经网络一样学习并对数据进行预测。但是,当前的量子计算机受许多因素(例如,可用量子计算机的规模和执行时间)的限制,这使量子神经网络很难超越经典的神经网络。量子计算机比经典计算机具有更高的性能和计算速度,但这在当前的量子计算环境中无法实现。然而,找到未来量子神经网络在技术开发中起作用的领域非常重要。在本文中,我们提出了NISQ中块密码Speck-32的第一个基于量子神经网络的区别。我们的量子神经差异化因素即使在受约束条件下也成功进行了多达5轮。此外,我们对影响量子神经区分因子性能的各种因素进行了深入分析。由于我们的实验,经典神经区分器的精度为0.93,但是由于数据,时间和参数的限制,我们的量子神经区分剂的精度为0.53。由于环境受到约束,它不能超过经典神经网络的性能,但是它可以作为区别者起作用,因为它的精度为0.51或更高。因此,确定了嵌入方法,量子数和量子层等具有效果。事实证明,如果需要一个高容量的网络,我们必须正确调整,以考虑电路的连接性和复杂性,而不仅仅是添加量子资源。将来,如果有更多的量子资源,数据和时间可用,则可以通过考虑本文提出的各种因素来设计实现更好性能的方法。
光子密码学发展的主要驱动力是传统的公钥密码学、私钥密码学和一次性密码本无法提供某些组织所需的安全级别。在这两个系统中,发送者和接收者需要交换称为密钥的秘密位序列。主要思想是确保此密钥的隐私。此密钥可以通过计算机网络或某种物理方式传输。这种交换密钥的方式在通信系统中产生了安全漏洞,所使用的大多数算法都基于某种数学技术,例如 RSA(Rivest-Shamir-Adleman)使用对极大素数进行因式分解,一些算法基于离散对数的计算。如今,已经发明了非常快的计算设备,可以在几个小时内完成此计算。大多数这些加密系统不会刷新其密钥,从而导致密钥膨胀率,这对信息和网络安全非常有害。此密钥还可以通过各种方式受到损害,例如暴力攻击,其中迭代测试或检查密钥。通过应用不同的密钥可能值,传统算法(例如高级加密标准 (AES)、RSA 等)无法检测数据在介质上传输时是否被窃听。因此,迫切需要开发一种技术来检测数据或信息在介质上传输时是否被窃听。人们为开发这种技术付出了很多努力,最终发展出了量子密码技术,该技术在保护通信网络方面发挥了巨大作用,尤其是在检测信息在通信介质上传输时是否被窃听方面。量子密码学基于光子的不确定性原理和偏振。这些原理表明,如果不干扰这些光子的实际状态,就不可能测量携带信息的光子的确切状态。当窃听者试图从光子中读取信息时,这些光子的状态会发生变化,从而检测到有人试图嗅探或监听。量子密码学