N )在给定足够数量的明文-密文对的情况下搜索大小为 N 的密钥空间。Jaques 等人 (EUROCRYPT 2020) 的最新成果展示了在 NIST 的 PQC 标准化过程中定义的不同安全类别下针对 AES 的量子密钥搜索攻击的成本估算。在这项工作中,我们将他们的方法扩展到轻量级分组密码,以估算在电路深度限制下量子密钥搜索攻击的成本。我们给出了轻量级分组密码 GIFT、SKINNY 和 SATURNIN 的量子电路。在 NIST 的最大深度约束下,我们给出了门数和深度乘以宽度成本指标的总体成本。我们还为所有版本的 GIFT、SKINNY 和 SATURNIN 提供了完整的 Grover 预言机的 Q# 实现,用于单元测试和自动资源估算。
摘要:差分攻击是分组密码的一种基本密码分析方法,利用输入和输出差分之间的高概率关系。现有的分组密码量子差分密码分析工作主要集中在基于经典计算机上构建的现有关系来估计恢复最后一轮子密钥的资源。为了利用量子计算机找到这种关系,我们提出了一种利用量子计算机搜索高概率差分和不可能差分特征的方法。该方法利用量子比特的叠加同时探索所有可能的输入和输出差分对。利用所提方法设计量子电路来搜索玩具密码 smallGIFT 的差分特征。基于分支定界的方法来验证利用所提方法获得的差分和不可能差分特征。
摘要近年来,新的基于混乱的加密算法激增,其中许多声称具有异常大的钥匙空间。尽管加密原语(例如对称键密码)应该具有足够大的秘密键空间以抵抗蛮力攻击,但仅增加秘密密钥的大小可能不会导致安全保障的提高。n -bit键不一定会由于密钥调度算法或如何使用密钥而具有2 n -1的密钥空间。在本文中,我们从其关键时间表的角度来看,加密基于混乱的算法。我们的数值分析基于Kerckhoff的原理,并考虑用于实数计算的数字表示。我们的分析表明,这些密码的实际安全保证金显着降低,其中有些比所声称的超过200倍以上。然后,我们为这些密码提供准确的键空间估计值。最后,我们重点介绍了如何在基于混乱的密码学背景下如何使用秘密密钥的替代解决方案,并提出了一个简单的密钥时间表作为概念证明。尽管简单起见,但提出的密钥时间表不仅可以确保钥匙空间匹配密钥长度,而且还通过NIST和ENT统计测试套件,也使其成为生成安全加密密钥的可行选择。我们的工作有助于解决基于混乱的密码学中基本问题之一,该问题限制了其在加密社区中的实际影响和声誉。
摘要 SM4密码算法是我国国家密码局发布的分组密码算法,已成为国际标准。通过优化量子比特数和深度乘以宽度的值实现了SM4分组密码的量子电路。在实现S盒时,基于复合域算法,针对SM4的不同阶段,提出了四种S盒的改进量子电路。在优化量子比特数时,采用量子子电路串联的方式实现SM4量子电路。实现的SM4量子电路只使用了260个量子比特,这不仅是实现SM4量子电路所用的最少量子比特数,也是实现8比特S盒、128比特明文和128比特密钥的分组密码算法所用的最少量子比特数。在优化深度乘以宽度的值时,我们通过并行实现来实现,权衡量子电路共采用288个量子比特,Toffili深度为1716,深度乘以宽度为494208,小于现有最佳值825792。
流密码[16]是对称密码学中使用的主要加密原始图之一。从历史上看,第一个流量密码是使用“线性”重新组件构建的,在寄存器更新函数(将一个状态发送到下一个状态)中,线性的含义均意味着在下一个状态中发送一个状态),在输出功能中,该功能将按键作为当前状态的函数计算为键流。纯粹的线性寄存器不再使用,因为它们的状态可以从其生成的键流的一小部分中迅速恢复,例如Berlekamp-Massey算法[5,第7章]。由于使用线性结构仅基于几个XOR大门而转化为硬件实现,这对于实际应用是非常可取的,因此大多数Modern crean Stream Cipher都保留了该原始结构的某些部分。在许多相互竞争的流设计中,最近引起了一些兴趣:所谓的非线性过滤器发电机[11]。的确,他们保留了由一个或几个线性寄存器组成的状态的线性更新,但是他们通过其状态的非线性函数输出键流:此功能称为滤波器。这些密码最值得注意的例子是WG-PRNG,它已提交给NIST轻量加密术的NIST竞争[1]。
独立于设备的量子密钥分发 (DIQKD) 提供了最强大的安全密钥交换形式,仅使用设备的输入输出统计数据即可实现信息论安全性。尽管 DIQKD 的基本安全原理现已得到充分理解,但为高级 DIQKD 协议推导出可靠且强大的安全界限仍然是一项技术挑战,这些界限要超越基于违反 CHSH 不等式而得出的先前结果。在这项工作中,我们提出了一个基于半有限规划的框架,该框架为使用不受信任设备的任何 QKD 协议的渐近密钥速率提供可靠的下限。具体而言,我们的方法原则上可用于基于完整输入输出概率分布或任何贝尔不等式选择来为任何 DIQKD 协议找到可实现的密钥速率。我们的方法还扩展到其他 DI 加密任务。
毕业生主理论的标题(部分): - 研究量子承诺方案的约束性质 - 研究对背包问题的研究,使用深度强化学习 - 基于密码的多收率KEM的构建 - 基于密码的认证共享基于密码的基于同质映射问题的基于密码的身份验证共享的研究 - 对均质的杂物的应用研究 - 基于同同效果的研究 - 对杂物的应用程序 - 效果 - 促进效果 - 作弊效果 - 身份验证的加密的最新进展 - 基于量子计算机的攻击的公共密钥密码学的安全评估的研究 - 对多方计算的研究,使用纽约平台上的区块链进行多方计算 - 比较均匀加密中的大小和小规模的比较 - 考虑到全均匀征服参数的衍生物的考虑。
或专业课程的研究生学士学位(M.E./ M.Tech)在研究生和研究生级别的Net/ Gate的研究生级别。理想的资格:预计将对线性代数,有限字段,加密术,概率和统计信息以及诸如Python,C等的编程语言具有一些基本知识。09。职位描述研究对块密码,新安全块密码的设计标准的经典攻击及其安全分析。10。项目研究的简要说明对块密码的现有经典攻击和块密码的设计标准,这些密码被认为是确保已知的密码攻击的安全性11。最高年龄28岁
摘要。基于密码的身份验证是最终用户安全性的中心工具。作为此的一部分,密码哈希用于确保静止密码的安全性。如果量子计算机以足够的大小可用,则能够显着加快哈希函数的预计数的计算。使用Grover的算法,最多可以实现平方根的速度,因此可以预期,量子通行证猜测也可以接收正方形的加速。但是,密码输入不是均匀分布的,而是高度偏差。此外,典型的密码攻击不仅会损害随机用户的密码,而且要解决数百万用户数据库中所有用户密码的很大一部分。在这项工作中,我们第一次研究那些量子大规模密码猜测。与经典攻击相比,当攻击所有密码的恒定分数时,我们仍然会在量子设置中获得平方根的加速,甚至考虑了强烈偏见的密码分配,因为它们出现在现实世界密码漏洞中。我们使用LinkedIn泄漏验证了理论预测的准确性,并为量子计算机时代的密码哈希和密码安全提供了特定建议。
在先前的单元9和10中,您研究了DNA如何通过转录转换为Messenger RNA(mRNA)。通过蛋白质合成过程将存储在核酸中的遗传信息转化为蛋白质。蛋白质包括20种必要的氨基酸,而活生物体中的核酸只有四种类型的碱。在与PAL进行对话时,您可能已经使用了代码短语或符号向他人隐瞒信息。细胞在表达基因产生蛋白质时也使用相同的过程。隐藏的消息是遗传密码,使DNA和RNA核苷酸序列转化为相应的氨基酸。遗传信息存储在称为遗传密码的mRNA的三胞胎密码子中,该密码是遗传密码的,该密码是蛋白质生产所需的20种氨基酸中的每一种。遗传代码在翻译过程中的作用对于理解遗传密码的基本特征至关重要。