即 [ a ] k ≤ [ b ] k ∀ k ∈ [ K ] 。给定一个向量 x ∈ RK , [ x ] + = (max { [ x ] 1 , 0 } , ..., max { [ x ] K , 0 } )。
摘要 — 本文研究了网络系统的实时优化问题,并开发了在线算法,无需明确了解系统模型即可引导系统朝着最佳轨迹运行。该问题被建模为具有时变性能目标和工程约束的动态优化问题。算法的设计利用了在线零阶原始对偶投影梯度法。具体而言,涉及目标函数梯度的原始步骤(因此需要网络系统模型)被其零阶近似所取代,并使用确定性扰动信号进行两个函数评估。评估是使用系统输出的测量值进行的,从而产生反馈互连,其中优化算法充当反馈控制器。本文对这种互连的稳定性和跟踪特性提供了一些见解。最后,本文将该方法应用于电力系统中的实时最优潮流问题,并展示了其在 IEEE 37 节点配电测试馈线上进行参考功率跟踪和电压调节的有效性。
我们考虑在文献中各处出现的对偶幺正算子及其多支泛化。这些对象可以与具有特殊纠缠模式的多方量子态相关:位置以空间对称模式排列,并且对于给定几何的反射对称性得出的所有二分,状态具有最大纠缠。我们考虑状态本身相对于几何对称群不变的情况。最简单的例子是那些也是自对偶和反射不变的对偶幺正算子,但我们也考虑六边形、立方和八面体几何中的泛化。我们为这些对象提供了各种局部维度的大量构造和具体示例。我们所有的示例均可用于构建 1 + 1 或 2 + 1 维的量子细胞自动机,并对“时间方向”进行多种等效选择。
量子几何是区分晶体中电子和真空中电子的关键量。对量子几何的研究继续为量子材料提供见解,揭示发现量子材料的新设计原则。然而,与贝里曲率不同,对量子度量缺乏直观的理解。在这里,我们表明布洛赫电子的量子度量导致动量空间引力。特别是,通过将电子动力学的半经典公式扩展到二阶,我们发现所产生的速度被测地线项修改,并成为弯曲空间中洛伦兹力的动量空间对偶。我们计算了魔角扭曲双层石墨烯的测地线响应,并表明具有平带的莫尔系统是观察这种效应的理想候选者。将这种与重力的类比进一步扩展,我们发现爱因斯坦场方程的动量空间对偶对于纯态仍然无源,而对于混合态,它获得一个取决于小熵的冯·诺依曼熵的源项。我们将该应力能量方程与广义相对论的弱场极限进行比较,得出冯·诺依曼熵是引力势的动量空间对偶的结论。因此,混合态的动量空间测地线方程被一个类似于熵力的项所修改。我们的研究结果强调了量子几何、动量空间引力和量子信息之间的联系,促使人们进一步探索量子材料中的这种对偶引力。
稳定器框架的性质要求稳定器之间能够相互交换,从而强制类似的经典加法码满足对偶包含约束。Calderbank、Shor 和 Steane (CSS) 进一步提出了一种从两个满足对偶包含约束的经典码构造量子码(也称为 CSS 码)的方法 [3][4]。由于 CSS 码的性质取决于相应的已充分研究的经典码,因此 CSS 码的分析很简单。Brun 等人通过引入在发射机和接收机之间利用预共享纠缠态的概念,进一步从不满足对偶包含约束的经典码构造量子码(也称为纠缠辅助 (EA) 码)[5]。假设纠缠态的接收端量子比特是无噪声的。 EA 码的构造依赖于从一组非交换算子构造阿贝尔群。此类码可提供比无辅助情况更好的纠错能力,对 EA 通信很有用。EA CSS 码由两个不满足对偶包含准则的经典码构造而成 [6] [7]。在多年来研究的各种经典码中,Reed-Muller (RM) 码已用于卫星和深空通信,而极化码(RM 码的泛化)则用于 5G 标准的控制信道 [8]。它们的代数性质使它们不仅可局部测试,而且可局部解码和列表解码 [9] [10]。RM 码具有软判决解码器,可利用软信息获得更好的性能。 [11] 经典 RM 码和量子 RM 码分别可以达到经典和量子擦除信道的容量 [12] [13]。二进制
简介。近年来,根据纠缠模式对量子态进行分类和研究的重要性已被揭示。一类重要的量子态是那些可以通过最小割方法计算纠缠熵的量子态。该方法假设状态可以用辅助“块”结构表示,通常是张量网络或——在全息对偶 [1] 中——块几何。最小割方法将区域 X 的纠缠熵等同于块割的权重,它将 X 与 ¯ X (X 的补集)分开。该方法适用于大键维度的所有随机张量网络状态 [2],并且——在全息对偶中——对 Ryu-Takayanagi 提案 [3 – 6] 中的主导面积项有效。本文关注最小割方法所暗示的纠缠熵约束。由于应用于全息对偶,此类约束通常被称为“全息熵不等式”。 “在假设的熵分配给区域的向量空间(熵空间)中,每个全息不等式的饱和点都是一个超平面。因此,所有全息不等式允许的熵集称为“全息熵锥” [7] 。进一步遵循全息命名法,我们将割线权重称为“区域”。最简单的全息不等式,称为互信息一夫一妻制 [8] ,是
摘要 。本文的前两部分(分别是 https://philpapers.org/rec/PENFLT-2 和 https://philpapers.org/rec/PENFLT-3)表明,费马最后定理 (FLT) 在希尔伯特算术中的狭义和广义解释可以在第一部分中通过归纳法提出证明,在第二部分中通过 Kochen-Specker 定理提出证明。同样的解释也适用于基于格里森定理的 FLT 证明,部分类似于第二部分中的证明。希尔伯特空间子空间的 (概率) 测度的概念,尤其是其唯一性,可以明确地与偏代数或不可通约性联系起来,或者在广义上解释为希尔伯特算术的两个对偶分支的关系。对最后一个关系的研究使得 FLT 和格里森定理在某种意义上等同于两个对偶对应物,前者可以从后者推出,反之亦然,但需要附加条件,即算术对集合论的哥德尔不完备性。反过来,量子比特希尔伯特空间本身也可以通过 FLT 和格里森定理的统一来解释。利用广义的希尔伯特算术证明 FLT 这样的数论基本结果可以推广到“量子数论”的概念。通过“非标准双射”及其两个与信息论内在关联的对偶分支,可以从数学上研究皮亚诺算术从希尔伯特算术的起源。然后,无穷小分析及其革命性的物理学应用也可以在更广泛的背景下重新实现,例如,作为对时间物理量(分别是物理学中考虑的任何时间过程中的时间导数)出现方式的探索。最后,结果允许对任何层次结构如何产生或改变自身进行哲学反思,这仅归功于其对偶和幂等对应物。关键词:完备性、格里森定理、费马最后定理、希尔伯特算术、幂等性和层次结构、科亨和斯佩克定理、非标准双射、皮亚诺算术、量子信息