3.对抗性使用人工智能的威胁:CISA 需要研究(通过 S&T)、开发和/或获取工具,以积极保护联邦民事行政部门机构和关键基础设施免受对抗性威胁。
1教育部图像处理和智能控制的主要实验室,人工智能与自动化学院,华恩科学技术大学,武汉430074,中国; 2华盛科技大学土木工程与力学学院,中国武汉430074; 3工程与信息技术学院人工智能中心,悉尼科技大学,悉尼,新南威尔士州,2007年,澳大利亚; 4美国加利福尼亚州加利福尼亚大学圣地亚哥分校神经计算学院Swartz计算神经科学中心,美国加利福尼亚州92093,美国; 5美国加利福尼亚州加利福尼亚大学圣地亚哥大学医学工程学院高级神经工程中心,美国加利福尼亚州,加利福尼亚州92093,美国和6 Zhaw Datalab,ZéurichApplied Sciences of Applied Sciences,Winterthur 8401,瑞士,
正确对道路物体的环境感知对于自动驾驶的安全至关重要。通过自动驾驶算法做出适当的决定可能会受到数据扰动的阻碍,而最近,对抗性攻击。我们提出了一种基于不确定性的对抗性测试输入生成方法,以使机器学习(ML)模型对数据扰动和对抗性攻击更为强大。对抗性攻击和不确定的投入可能会影响ML模型的性能,这可能会产生严重的后果,例如通过自动驾驶汽车在道路上对物体的错误分类,从而导致决策不正确。我们表明,我们可以通过制作一个包含高度不确定的对抗测试输入的数据集来获得更强大的ML模型,以用于自动驾驶。我们证明了鲁棒模型的准确性提高了12%以上,并且模型返回的决策的不确定性显着下降。我们认为我们的方法将有助于进一步开发风险感知的自主系统。©2022 ISA。由Elsevier Ltd.发布的所有权利保留。
摘要 - 使用深层生成模型生成的深层效果或合成图像对在线平台构成了严重的风险。这触发了几项研究工作,以准确检测DeepFake图像,在公开可用的DeepFake数据集上取得了出色的性能。在这项工作中,我们研究了8个州的探测器,并认为由于最近的两个发展,他们还远未准备好部署。首先,轻巧的方法的出现可以自定义大型生成模型,可以使攻击者能够创建许多自定义的发电机(创建深层效果),从而实质上增加了威胁表面。我们表明,现有的防御能力无法很好地推广到当今公开可用的用户定制的生成模型。我们讨论了基于内容不足的功能的新机器学习方法,并进行集成建模,以提高对用户定制模型的概括性能。第二,视觉基础模型的出现 - 经过广泛数据训练的机器学习模型,可以轻松地适应几个下游任务 - 攻击者可能会滥用攻击者来制作可以逃避现有防御措施的对抗性深击。我们提出了一次简单的对抗性攻击,该攻击通过仔细的语义操纵图像内容来利用现有的基础模型在不增加任何对抗性噪声的情况下制作对抗性样本。我们强调了针对我们的攻击的多种防御能力的脆弱性,并探索了利用高级基金会模型和对抗性训练来防御这种新威胁的方向。
图3 市售 AI 软件的显着相关性评估。通过扰动原始胸部 X 光片(上行),通过攻击代理模型生成对抗性图像(下行)。然后将对抗性图像输入到市售医疗 AI 模型中。请注意,从原始图像到对抗性图像对不同发现的预测概率变化很大,而
量子机学习模型与其经典同行相比,有可能提供加速和更好的预测精度。然而,这些量子算法与它们的经典算法一样,也已被证明也很容易受到输入扰动的影响,尤其是对于分类问题。这些可能是由于嘈杂的实现而引起的,也可以作为最坏的噪声类型的对抗性攻击。为了开发防御机制并更好地理解这些算法的可靠性,在存在自然噪声源或对抗性操纵的情况下了解其稳健性至关重要。从量子分类算法涉及的测量值是自然概率的,我们发现并形式化了二进制量子假设测试与可证明可证明可靠的量子分类之间的基本联系。此链接导致紧密的鲁棒性条件,该条件对分类器可以忍受的噪声量构成约束,而与噪声源是自然的还是对抗性的。基于此结果,我们开发了实用协议以最佳证明鲁棒性。最后,由于这是针对最坏情况类型的噪声类型的鲁棒条件,因此我们的结果自然扩展到已知噪声源的场景。因此,我们还提供了一个框架来研究量子分类方案的可靠性,超出了对抗性,最坏情况的噪声场景。
对抗性攻击会操纵输入数据以造成错误或错误分类,从而绕过安全措施并控制 AI 系统的决策过程。对抗性攻击有多种形式,其中最常见的两种类型是逃避攻击和模型提取攻击。逃避攻击试图设计逃避 AI 系统防御检测的输入,并允许攻击者实现其目标(例如绕过安全措施或生成错误结果)。由于输入对 AI 系统来说似乎是合法的,因此这些攻击可能会产生不正确或意外的输出,而不会触发任何检测或警报。模型提取攻击试图从组织窃取经过训练的 AI 模型以将其用于恶意目的。某些应用程序特别容易受到这些攻击。对抗性攻击的影响因用例和行业而异,但可能包括:
真实学习是一种实践性的教育方法,旨在为学生提供解决实际问题所需的技能和知识。在网络安全背景下,真实学习可以帮助学生培养所需的技能,以应对机器学习系统日益增加的对抗性攻击风险。为了实现这一目标,真实学习通常涉及一系列实验前、实验和实验后活动,学生在其中学习关键概念、练习解决问题并反思他们的解决方案。随着机器学习变得越来越普遍,对抗性攻击和其他安全威胁的风险也在增加。对抗性攻击可以绕过传统的网络安全防御并造成重大损害,例如窃取敏感数据或注入恶意代码。除了对抗性攻击外,人工智能系统还面临着多种安全威胁 [1],例如人工智能木马 [2]、模型反转 [3] 和其他类型的网络攻击。为了有效地对抗这些威胁,网络安全课程需要结合对机器学习系统攻击和防御的真实学习。然而,目前该领域缺乏教学和学习材料、开源便携式动手实验室软件以及专门的工作人员和教师。为了应对这些挑战,我们提出了一种开源、便携和模块化的方法来增强人工智能的安全性和隐私性。这种方法涉及开发在线、便携式动手实验室软件,该实验室软件由多个模块组成,涵盖各种主题,例如入门、对抗性示例攻击和防御、AI 木马攻击和防御、模型反转攻击和防御、数据集中毒攻击和防御、算法
摘要:机器学习中的分解助长了连接和自动驾驶汽车(CAV)的快速进步,但它们遇到了对抗性攻击的重大风险。本研究探讨了基于机器学习的入侵检测系统(IDSS)在车内网络(IVN)中的脆弱性(IDSS)到对抗性攻击,从而从对操纵CAV感知模型的常见研究转移了重点。考虑到IVN数据的相对简单性质,我们评估了基于IVN的IDS对操纵的敏感性,这是一种至关重要的检查,因为对抗性攻击通常会利用复杂性。我们使用替代IDS提出了一种对抗性攻击方法,该替代ID经过培训的诊断端口数据。在遵守现实的IVN流量限制的同时,在黑盒条件下进行这些攻击时,我们的方法试图欺骗ID,以误解了正常情况到恶意和恶意的案例。对两个IDS模型的评估(基线ID和最先进的模型,即MTH-IDS)呈现了实质性的漏洞,将F1得分从95%降低到97%,并从97%降低到79%。值得注意的是,诱导虚假警报被证明是一种对抗性策略特别有效,破坏了用户对国防机制的信任。尽管基于IVN的IDS的简单性,但我们的发现揭示了可能威胁到车辆安全的关键漏洞,并且需要仔细考虑基于IVN的IDSS的开发以及对IDSS警报的响应的制定。