在石墨烯中,与量子大厅(QH)方向上的自旋和山谷自由度相关的近似SU(4)对称性在石墨烯Landau水平(LLS)的四重脱胶中反映了。相互作用和Zeeman效应打破了这种近似对称性并提高LLS的相应堕落性。我们研究了近似SU(4)对称的破裂如何影响位于超导体附近的石墨烯QH边缘模式的性质。我们展示了四倍变性的提升是如何定性地修改QH-螺旋导体异质结的运输特性。对于零LL,通过将边缘模式放置在靠近超导体的位置,从原则上讲,在存在较小的Zeeman Field的情况下,可以实现支撑Majoranas的一维拓扑超导体。我们估计了这种拓扑超导体的拓扑间隙,并将其与QH-Superconductor界面的性质相关联。
南大洋为全球海洋热量和碳吸收提供了主要的贡献,这被广泛解释为其独特的上升和循环。在这里,我们在这些贡献中显示出很大的不对称性,而在最先进的气候模型中,南方海洋占全球热量吸收的83±33%,而全球海洋碳吸收的43±3%。使用单个辐射强迫实验,我们证明了这种历史不对称是由于增强的气溶胶强迫抑制了北部海洋的热量吸收。在未来的预测中,例如SSP2-4.5,温室气体越来越主导辐射强迫,南大洋对全球热量和碳吸收的贡献分别更为可比性,分别为52±5%和47±4%。因此,过去不是未来的可靠指标,北部海洋对于热量吸收而变得重要,而南部海洋对于热量和碳吸收都至关重要。
基于石墨炔 (GY) 和石墨炔 (GDY) 的单层代表了下一代二维富碳材料,其可调结构和性能超越石墨烯。然而,检测原子级厚度的 GY/GDY 类似物中的能带形成一直具有挑战性,因为该系统必须同时满足长程有序和原子精度。本研究报告了在表面合成的金属化 Ag-GDY 薄片中形成具有介观(≈ 1 μ m)规律性的能带的直接证据。采用扫描隧道和角度分辨光电子光谱,分别观察到费米能级以上实空间电子态的能量相关跃迁和价带的形成。此外,密度泛函理论 (DFT) 计算证实了这些观察结果,并揭示了蜂窝晶格上双重简并的前沿分子轨道产生接近费米能级的平坦、狄拉克和 Kagome 能带。 DFT 建模还表明原始薄片材料具有固有带隙,该带隙保留在具有 h-BN 的双层中,而吸附诱导的带隙内电子态在 Ag-GDY 装饰银的 (111) 面的合成平台上演变。这些结果说明了通过原子精确的二维碳材料中的分子轨道和晶格对称性设计新型能带结构的巨大潜力。
©2024作者。本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许使用,共享,适应,分发和繁殖任何任何媒介或格式,只要您适当地归功于原始作者和来源,就提供了与Creative Commons许可证的链接,并指示了Ifchanges。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。文章的创意共享许可中未包含材料,并且您的预期用途不允许法定法规或超过允许的用途,您将需要直接从版权所有者那里获得persermission。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
是由于最近在扭曲的双层WSE 2中发现超导性的动机,我们在Moiré超级峰值的连续模型的框架中分析了该系统中的相关物理学。在系统的微调极限下使用对称性,当考虑到有限的带宽,位移场和内部电位的相位扰动时,我们确定强耦合接地状态及其命运。我们对超导不稳定性进行了分类,并采用了类似自旋的特性模型,研究了与这些绝缘颗粒孔阶的接近性的超导不稳定。这表明只有一个相邻的间隔相干阶段(具有零或有限波矢量)自然与观察到的超导状态是一致的,我们表明,这在非平凡带拓扑的影响至关重要。取决于细节,超导体将是淋巴结或手性凹陷状态,而包括电子 - 光子耦合将导致完全间隙的,时间逆转的对称配对状态。
在连续体(BICS)中的结合状态违背了传统智慧,该智慧假定传播波之间的光谱分离,将能量带走,并在空间局部的波浪中,对应于异常频率。它们可以描述为具有有限寿命的共振状态,即泄漏为零的泄漏模式。超材料和纳米光子学的出现允许在各种系统中创建BICS。主要是,BIC是通过在传出的谐振模式之间或利用工程的全局对称性之间实现的,从而实现了从周围辐射模式中实施对称性兼容的界限模式的解耦。在这里,我们研究了依靠不同的机械性的BIC,即局部对称性,这些对称性在不暗示任何全球对称性的情况下强制集中在复杂系统的一部分上。我们在compact一维光子网络中使用微波实验实现了这些BIC。我们证明,这种BIC在K空间中形成了一个有限的梯子,并源于两个拓扑奇异性的an灭,该拓扑奇异性是零和一个极点的散射矩阵。这种用于在复杂波系统中实现BIC的替代方案可能对需要高Q模式的非线性相互作用的传感,激光和增强等应用有用。
希格斯机制是弱规玻色子获得质量术语的过程。这是电子对称组的自发对称破坏的结果。该理论的原始对称性被自发地破坏,因为对于非零常数的电势被最小化。此常数称为真空期望值(VEV)。在该项目中,已经在标准模型(SM)描述中研究了Electroweak对称性破坏,并使用有效的现场理论方法在SM的扩展中进行了研究。已经研究的有效田地理论是标准模型有效田间理论(SMEFT),其有效的尺寸为6。已经使用一个有效的操作员(((φ†φ)3)进行了分析计算,它影响了Higgs电位和自发对称性破坏。随着添加的运算符,计算了希格斯质量和VEV的表达式。这些表达式可用于修复希格斯自耦合常数与有效操作员的耦合常数之间的关系。仪表和费米亚扇区保持不变,除了它们通过VEV的表达进行了修改。作为论文中理论工作的应用,使用madgraph进行了LHC的Higgs对生产的模拟。此仿真程序计算事件的横截面。模拟既是使用标准模型作为输入进行的,又可以与SMEFT操作员一起研究有效的操作员如何影响HIGGS对的横截面和不变质量。生成的横截面显示出对Wilson系数Cφ的二次依赖性,这意味着我们还必须包括尺寸至八操作符,以使理论保持一致。
(1)晶体结构:识别分子和固体的结构对称性对于了解其物理和某些化学特性的性质很重要。分子对称性由一个点组总结,为此,所有对称元素(点,轴,平面)在一个固定点上相交,该固定点被分配为空间坐标系的起源。例如,考虑使用点组𝒟6h。起源在没有原子的分子中心。其一些对称元素包括六倍旋转轴和六个垂直镜面;相应的操作是由2π/6(60°)的倍数旋转和反射。晶体固体在空间中的多个点显示旋转对称性,因为这些结构也表现出转化周期性,这是由晶格描述的。旋转和翻译对称操作的组合产生了一个空间群。考虑石墨烯的结构,该结构由融合的六元环的平面网络组成。如果忽略了平面中结构的终止,则每个六角形的中心都有六倍的旋转轴,并且每个碳原子都与三倍的旋转轴相交。翻译周期性由连接每个六角形中心的单位单元(平行四边形)表示。作为另一个例子,Cenic 2的结构包含[NIC 2]的平面与[NIC 2]平面的七元环上方和以下的CE原子平面交替。在沿堆叠方向的该结构的投影中,单位单元格是一个矩形,垂直镜面显而易见。此外,这种晶体结构还有另一种类型的对称性操作,对于任何分子:滑动反射而不会发生,其中通过镜面的反射是平行于(沿着(沿着)反射平面的(“滑行”)的位移。自身反射或自身位移都不是对称操作,但是两个操作的组合是用于Cenic 2结构。
据我们所知,这是第一例与使用 GH 促泌剂有关的 EMN 病例。由于此类制剂供应充足,医生必须意识到这种副作用,并反对在没有医学指征的情况下使用它们,同时考虑到 EMN 恶性转化的风险,尤其是
对称性是现代物理的基石之一,在不同领域具有深远的影响。在受对称保护的拓扑系统中,对称性负责保护表面状态,这是这些材料所表现出的迷人特性的核心。当保护边缘模式的对称性破裂时,拓扑阶段就会变得微不足道。通过工程损失破坏了保护拓扑遗产阶段的对称性,我们表明出现了新的真正的非热对称性对称性,它保护并选择了其中一种边界模式:拓扑单层。此外,非富甲系统的拓扑结构可以以更高维度的有效遗产汉密尔顿人为特征。为了证实该理论,我们使用光子晶格研究了非弱者单和二维SSH模型,并在两种情况下都观察到动态产生的单体。我们根据存在并计算相应拓扑不变的(非热)对称性对系统进行分类。