研究了快速热退火对射频溅射系统沉积的高 k HfO 2 超薄膜结构和电学性能的影响。分别在氧气和氮气环境下研究了薄膜特性以获得最佳快速热退火温度,以获得作为 MOS 器件结构的最佳电学效果。使用傅里叶变换红外光谱 (FT-IR) 详细研究了温度诱导退火对 HfO 2 /Si 界面的影响。分别通过椭圆偏振仪、XRD 和 AFM 研究了薄膜厚度、成分和微观结构,并显示了退火对这些参数的影响。采用 Si/HfO 2 /Si MOS 电容器结构研究了退火电介质薄膜的 I-V 和 C-V 特性。结果表明,在氮气环境下采用快速热退火 (RTA) 的 HfO 2 /Si 堆栈比在氧气环境下表现出更好的物理和电学性能。结果表明,RTA 改善了 HfO 2 /Si 的界面特性和 HfO 2 超薄膜的致密化。在氮气和氧气中分别以 700 C 退火后,沉积的薄膜为非晶态和正交晶系。我们发现,氮气退火样品的等效氧化物厚度、界面态密度、电容-电压滞后和漏电流均有所降低;此外,在正电压偏置和温度应力下,电荷俘获也几乎可以忽略不计。本文对结果进行了介绍和讨论。2011 Elsevier BV 保留所有权利。
先进的 CMOS 技术在每一代新产品中都采用传统的尺寸缩放和颠覆性技术创新,以实现预期的性能改进 [1][2]。这在纳米技术中更为重要,因为传统的结深、栅极长度和栅极氧化物厚度缩放正在接近某些物理极限。先进 CMOS 技术的主要工艺突破之一是将大量应力元件引入 NMOSFET 和 PMOSFET(图 1),以提高性能。特别是,PMOSFET 器件受到了更多关注,因为 SiGe 技术随时可用,这种技术易于理解且与基础硅工艺完全兼容。这些工艺元件(如源极/漏极 eSiGe)已成功集成到 45nm [3] 至 32nm [4][5] 及以后的高性能 PMOSFET 中。其他应力元件(如压缩或拉伸应力衬里)对 PMOSFET 或 NMOSFET 都有好处,具体取决于氮化硅衬里的应力极性。尽管有大量文献介绍了传统缩放和不同应力元件如何影响 MOSFET 性能,但人们对它们对在高电流水平下工作的器件的影响知之甚少,例如在 ESD 类脉冲条件下 [6]。据报道,ESD NMOSFET 的故障电流不受拉伸衬里工艺的显著影响 [7],原因是