本研究采用渐进式划痕试验研究了采用直流磁控溅射制备的 Ni(25 nm)/Cu(25 nm)/Cr(25 nm) 三层薄膜的微摩擦学特性。研究并比较了四种不同类型的薄膜:沉积态薄膜、低能 Ar + 离子辐照后的薄膜、在真空中 450 °С 退火 15 分钟的薄膜以及离子辐照后真空退火的薄膜。划痕试验辅以结构 (XRD) 和化学 (AES) 实验研究。结果表明,在所有研究的薄膜中,离子辐照后退火的样品表现出最好的微摩擦学和耐磨特性。辐照后退火的样品表现出最高的抗划痕性、光滑的划痕形状、最低的峰值切向力值以及没有侧裂纹和薄膜分层。本文讨论了这种行为的可能原因。
如果您对ML,图像处理和计量学感兴趣,并想了解有关医疗保健研发项目的更多信息,那么这项实习是一个绝佳的机会。有关该项目的进一步问题,请随时与数据科学和建模小组或Martine Kuiper(M.W.Kuiper@amsterdamumc.nl)科学家的Federica Gugole(fgugole@vsl.nl)科学家联系。如果您有兴趣并将申请,请将您的简历和动机信发送给人力资源部业务伙伴Lydia de Koning(ldekoning@vsl.nl)。
分子治疗的进步使得通过全身或局部给药进行基因编辑成为合理治疗遗传疾病的可行策略。将治疗剂封装在纳米颗粒中可以改善治疗剂的细胞内输送,前提是纳米颗粒能有效地被靶细胞吸收。在之前的工作中,我们已经建立了原理证明,即携带基因编辑试剂的纳米颗粒可以在胎儿和成年动物体内介导位点特异性基因编辑,从而改善啮齿动物 β-地中海贫血和囊性纤维化模型的功能性疾病。对纳米颗粒表面进行修饰以包括靶向分子(例如抗体)有望改善细胞吸收和特定细胞结合。
通常,半导体纳米线是通过众所周知的技术来制备的,例如多孔模板中的电化学沉积、化学传输、使用金催化种子的化学气相沉积等[3-5],这些技术代表了自下而上的技术。在过去的二十年中,已经证明,电化学蚀刻大块半导体晶体可作为纳米结构的一种经济有效的方法[6-8]。此外,通过优化电化学参数可以制备大量垂直于晶体表面的半导体纳米线。通过阳极氧化制备纳米线具有一些优点:蚀刻时间短;阳极氧化在室温下进行;不需要昂贵的设备;电解质用量少等。此外,已经证明了通过“快速电化学蚀刻”InP半导体化合物来经济高效地制备InP纳米线的可能性[9]。使用这种方法,作者在3秒的电化学蚀刻期间制备了长度为2μm的半导体纳米线,蚀刻速率达到约40μm/min。
摘要背景:受自然界的启发,仿生方法已被用于癌症靶向化疗的药物纳米载体。纳米载体被细胞膜包裹,这使它们能够结合天然细胞的功能。综述的关键科学概念:表面用细胞膜改造的纳米载体已成为癌症靶向化疗的迷人材料来源。细胞膜包覆纳米载体 (CMCN) 的一个显着特征是它们除了具有生物相容性外,还包含碳水化合物、蛋白质和脂质。CMCN 能够与肿瘤复杂的生物环境相互作用,因为它们包含其母细胞的信号网络和内在功能。已经研究了许多细胞膜,目的是用膜掩盖纳米载体,并且已经设计出各种肿瘤靶向方法来改善癌症靶向化疗。此外,来自不同细胞来源的膜的多样化结构拓宽了 CMCN 的范围,并提供了一类全新的药物输送系统。综述目的:本综述将描述 CMCN 的制造工艺和不同类型的细胞膜包覆纳米载体药物输送系统的治疗用途,以及解决障碍和未来前景。关键词:纳米载体、细胞膜、癌症、化疗、靶向药物输送
采矿业在社会经济发展中的作用已记录在国民账户、财政数据、矿业商会年度评论等二手资料来源中,然而,在微观层面,关于采矿业的社会经济影响的信息有限。本报告试图通过对独立后时期(1990 年至 2018 年)的案头研究来填补文献中的这一现有空白。主要数据收集是通过对居住在不同矿业城镇周围的社区(员工和社区成员)采用便利(非概率)抽样方法进行的。为此,本研究目的有两个:(i)评估采矿业在普通经济增加值和经济增长之外对社会的贡献;(ii)评估采矿业的挑战。然后使用社会和科学统计软件包 (SPSS) 软件分析收集的主要数据。
纳米级的材料显示出令人兴奋和不同的特性。在这篇综述中,对纳米材料的应用在修改微生物燃料电池(MFC)系统(即电极和膜)的主要组成部分及其对细胞性能的影响进行了审查并进行了严格讨论。碳和金属的纳米颗粒以及导电聚合物可能有助于厚的阳极和阴极微生物生物膜的生长,从而导致电极和生物膜之间的电子转移增强。扩展活性表面积,电导率增加和生物相容性是MFC修饰中使用的有希望的纳米材料的重要属性。在本文中还综述了纳米材料在制造阴极催化剂(催化氧还原反应)中的应用。在阴极侧使用的各种纳米催化剂中,金属纳米催化剂(例如金属氧化物和金属有机框架(MOF))被认为是常规使用的高尺寸PT的廉价且高性能的替代品。此外,与常规使用且昂贵的Nafion相比,用亲水性和抗菌纳米颗粒修饰的聚合物膜可能导致更高的质子电导率和缓解生物污染物。这些改进可能会导致发电,废水处理和纳米接种的细胞性能更具有希望的细胞性能。未来的研究工作也应考虑到纳米材料的生产成本以及这些化合物的环境安全方面的降低。
摘要 人们普遍提出添加纳米填料作为增强高压聚合物绝缘材料介电性能的方法,尽管文献中对此的报道褒贬不一。本文确定了二氧化硅纳米粒子延长失效时间的潜力,特别是通过抵抗环氧树脂中的电树枝生长。在混合之前用硅烷处理纳米粒子的好处很明显,可以减缓树枝生长并缩短失效时间。在实验室中测量了针状平面样品中树枝的生长情况,其中纳米填料的含量分别为 1、3 和 5 wt%。在所有情况下,平均失效时间都会延长,但在混合之前对纳米粒子进行硅烷处理可获得更好的效果。在填充量较高的硅烷处理情况下,树枝生长前会出现明显的起始时间。用硅烷处理的 5 wt% 填充材料的平均失效时间是未填充树脂的 28 倍。含有未处理和处理过的填料的纳米复合材料性能的提高归因于处理过的填料团聚物减少和分散性提高。局部放电 (PD) 测量表明,在处理过和未处理过的情况下,树木生长过程中的 PD 模式存在显著差异。这种区别可能为监测材料提供一种质量控制方法。特别是,在硅烷处理的情况下,观察到长时间未测量 PD。对未填充材料中的树木生长进行视觉成像,可以观察到树木在生长过程中从细树到深色树的变化性质。相应的 PD 测量表明深色树逐渐变得导电,并且测得的最大 PD 的增长取决于树木生长和碳化的相对速率。
摘要:改善脆性底物上纳米化薄膜的界面稳定性对于诸如微电子等技术应用至关重要,因为所谓的脆性 - 延性 - 延性 - 延性界面限制了其整体可靠性。通过调整薄膜特性,由于分层过程中的外部韧性机制,可以改善界面粘附。在这项工作中,在模型的脆性 - 凝胶界面上研究了膜微结构对界面粘附的影响,该模型由脆性玻璃底物上的纳米化cufim插头组成。因此,使用磁控溅射将110 nm薄的Cu纤维沉积在玻璃基板上。虽然在溅射过程中保持纤维厚度,残留应力和纹理的质地可比,但在沉积过程中和通过等温退火过程中,纤维微结构变化了,导致四个不同的cufifms产生了晶粒尺寸分布。然后使用应力的MO覆盖剂确定每个Cufim的界面粘附,这触发了直接自发扣的形状的Cufifm分解。每个薄膜的混合模式粘附能的范围从较大晶粒的膜的2.35 j/m 2到4.90 j/m 2的纤维,对于纳米晶粒量最高的薄膜。使用聚焦的离子束切割和通过共聚焦激光扫描显微镜对扣子进行额外研究,可以通过对扣的额外研究进行清晰的效果,以将其切换并量化固定在弯曲的薄膜中的弹性和塑性变形的量。关键字:薄膜粘附,脆性 - 延性界面,自发扣,纤维微观结构,纳米化的cufifms可以证明,具有较小晶粒的膜表现出在分层过程中吸收更高量的能量的可能性,这解释了它们较高的粘附能量。