摘要。这项研究探讨了对环保CNC-PALM油,GNP-PALM油以及CNC/GNP-PALM OIL MONO和混合纳米流体的热物理特性的检查。稳定性评估涉及全面的分析,结合了视觉观察和导热率评估。值得注意的是,观察到的杂交混合物的比例升高导致纳米悬浮的稳定性增强,从而确保了纳米材料在碱液体内的均匀分散体长期。结果表明,含有CNC/GNP并用棕榈油配制的杂化纳米流体表现出很大的稳定性。在令人印象深刻的30天持续时间内进行全面的视觉检查显示,累积最小,强调了这些纳米流体的持久稳定性。该研究还检查了关键的热和物理特性,包括有关温度的热导率和粘度。在导热率中看到了最显着的增强,在70°C下,0.1W/V%浓缩的CNC/GNP/GNP/GNP/棕榈油杂化纳米流体的100%增加了100%,与基础流体相比表现出显着改善。此外,粘度有明显的增量,尽管与导热率相比,增强性的增强性更高。这些结果表明,浓度升高之间的直接关系可以提高稳定性和导热率。这项研究为在纳米流体应用中利用CNC/GNP提供了宝贵的见解,这对需要增强的热性能和流体稳定性的田地影响。
氮化铝(ALN)是由于其高热电导率高的3D集成电路(IC)的热管理材料。然而,在低温下生长的Aln薄膜中实现了高温的高温电导率,这对后端(Beol)兼容性构成了显着的挑战。这项研究报告了高温度SIO 2底物在低温(<200°C)下在低温(<200°C)下降低的近300 nm厚的Alnfms溅射,接近90 wm-1 K-1的高平面热电导率。探索了跨平面与平面导热率,质地,晶粒尺寸,氧含量,Al:N原子比和这些纤维的热边界电导之间的相关性。这些发现揭示了晶粒方向对齐在达到高导热率和高热边界电导方面的关键作用。使用X射线差异引入了一种方法来有效地监测Aln薄膜的导热率。这项研究提供了有价值的见解,可以帮助在半导体生产线上实施有效的热管理材料。
对微电器设备和有效热电的有效导热的需求不断增长,这增加了对具有极高或极低导热率的新材料的需求[1,2]。二维(2D)薄片,例如石墨烯或六角硼(HBN)在固态材料中最高的导热率中显示出最高的导热率。它们的尺寸与吸引人的电荷和热运输特性相结合,使其成为纳米电子设备的热量管理的良好候选者[3]。尽管最近在纳米技术方面取得了进步,但对纳米结构和低维系统热流的研究仍然是一项艰巨的任务。在这项工作中,我们介绍了旨在在多个方向上测量纳米材料的平面热特性的设备的制造和表征。我们在这里提出了一种旨在在多个方向上测量纳米材料的纳米材料的热能性能的设备的制造和表征[4]。此外,该设备允许同时执行电气和光学测量。这允许空间解决最终的热性能各向异性并校正接触电阻。制造没有与要研究的特定纳米结构有关的元素。最后,我们使用250 nm厚的硅薄片(图1)验证了设备的准确性,该硅层充当参考系统,并提供了探索主要热接触电阻的影响的可能性。我们已经使用拉曼温度计来计算薄片的有效晶格温度,这是膜上施加的温度的函数(图2),我们提取了平均界面界面导热率为2.4∙104𝑊𝑊22。
设备,采用非平衡分子动力学方法来研究工作温度,界面大小,缺陷密度和缺陷类型对氮化碳/石墨烯/钻石异种结构的界面导热率的影响。此外,计算各种条件下的声子状态密度和声子参与率,以分析界面热传导机制。结果表明,界面热电导随温度升高而增加,突出了异质性固有的自我调节热量耗散能力。随着温度从100升的增加,单层石墨烯结构的界面热电导增加了2.1倍。这归因于随着温度升高的重叠因子的增加,从而增强了界面之间的声子耦合,从而导致界面导热率增加。此外,在研究中发现,增加氮化岩和石墨烯的层数会导致界面热电导量减少。当氮化壳层的数量从10增加到26时,界面的导热率降低了75%。随着层数增加而减小的重叠因子归因于接口之间的声子振动的匹配减少,从而导致较低的热传递效率。同样,当石墨烯层的数量从1增加到5时,界面热电导率降低了74%。石墨烯层的增加导致低频声子减少,从而降低了界面的导热率。此外,多层石墨烯可增强声子定位,加剧了界面导热的降低。发现引入四种类型的空缺缺陷会影响界面的导电电导。钻石碳原子缺陷导致其界面导热率增加,而镀凝剂,氮和石墨烯碳原子的缺陷导致其界面导热降低。随着缺陷浓度从0增加到10%,由于缺陷散射,钻石碳原子缺陷增加了界面热电导率,增加了40%,这增加了低频声子模式的数量,并扩大了界面热传递的通道,从而提高了界面热电导率。石墨烯中的缺陷加强了石墨烯声子定位的程度,因此导致界面导热率降低。胆汁和氮缺陷都加强了氮化炮的声子定位,阻碍了声子传输通道。此外,与氮缺陷相比,甘露缺陷会引起更严重的声子定位,因此导致界面的界面热电导率较低。这项研究提供了制造高度可靠的氮化炮设备以及广泛使用氮化壳异质结构的参考。
碳纤维(CF)增强聚合物复合材料已用于航空航天结构,因为与铝合金相比,它们具有低质量,高特异性,高特异性刚度和低生命周期维护。但是,由于其相对较低的导热率,原始的CF聚合物复合材料无法为某些应用(例如热交换系统和散热器)提供有效的热流。本文所描述的技术提供了新型的CF聚合物复合材料,通过掺入热解石墨板(PGS),具有很高的导热率。新型混合PGS/CF聚合物复合材料的热导率的测量比原始CF聚合物复合材料高约13至36倍,并且是铝合金6061的两倍。这种具有足够热导率的新材料适用于热交换系统的复合辐射器。
系统中的能量传输•可以有效地传输能量,存储或消散,但不能产生或破坏•通过润滑或绝缘来减少耗散•建筑物的冷却速率受墙壁的厚度和导热率的影响
地热是在能量过渡时期强化开发的可再生能量之一。印度尼西亚是世界第二大地热潜力的国家,地热潜力为23,765.5 MWE。在M.M.S.C.F场中被归类为以二进制周期技术开发的液体主导的地热火山系统。在二进制周期中使用常规工作流体的能源效率低。地热纳米流体颗粒由两个或多个纳米大小的颗粒(1-100 nm)组成,这些颗粒被悬浮并溶解在碱性流体中,以增加热导率并在热交换器中加速热传递。但是,该技术的损失包括大型资本支出的成本(CAPEX)。本研究应用CuO -Al 2 O 3来提高热交换器的能量效率,与导热率的增加成正比。本研究中使用的方法是一种定量分析,通过将常规二进制周期系统与M.M.S.C.F现场热交换器中的二元循环混合纳米颗粒流体系统进行比较,并基于先前的文献研究。这项技术的优点是,由于导热率值的增加而增加的传热速率,发现杂交纳米粒子流体的导热率值与0.56 W/M°的基本流体相比,杂交纳米粒子流体的热传导率增加了0.79 w/m°C,增加了23%。基于经济指标的计算结果,付费时间(POTS)和PI,IRR和NPV技术的价值比常规二进制周期更积极。这项研究的效果将对该行业提高二进制周期的效率有益。