工业数字化(工业 4.0)是在人员、流程、服务、系统、数据和工业资产互联的环境中对工业进行数字化转型,以实现智能工业和工业创新与协作生态系统。工业 4.0 的三个有前景的方面是工业物联网 (IIoT)、信息物理系统 (CPS) 和数字孪生 (DT)。这些方面存在挑战。首先,有许多通用的 IIoT 标准和框架,单独在各种工业用例中是不够的。因此,工程师必须使用许多标准指南来根据具体情况设计 IIoT 架构。其次,各行业部署的系统基于不同的标准和技术,无法与其他系统互通,因此只能孤立运行,因此收集数据进行分析、报告和决策具有挑战性。第三,在工业 CPS (ICPS) 环境中,大多数嵌入式系统都是资源受限的电池驱动设备,面临着诸如由于能耗高导致使用寿命短、服务可用性低和安全性低等挑战。本论文的范围是针对上述方面和挑战研究工业数字化。首先,我们研究通用的 IIoT 标准和框架,并使用它们来合成高级 IIoT 架构。作为架构验证和确认的用例,我们专门研究了采矿业
尽管 LIB 技术被认为对于我们能源系统中的能源存储至关重要,但它存在一些固有的限制,例如成本高、寿命短、安全特性差和环境危害 3,这促使人们研究替代能源存储技术。过去十年中,出现了几种替代能源存储技术,其中一些基于生物衍生材料。它们有望实现廉价且环保的能源存储。4 人们开发了许多概念来利用木质纤维素材料作为能源存储电极的关键成分,从利用木质素作为二次电池中的氧化还原活性阴极材料 5 到利用纤维素的天然结合特性作为电双层电容器 (EDLC) 中的关键结构成分 6。这些生物基电池和超级电容器(有时也称为纸电池)的设计和开发都具有环保特性,包括材料来源、生产、操作以及使用寿命结束时的处置/回收规范。 7 此外,与传统的电极制造方法(围绕在金属集流体上涂覆电极浆料的方法)相比,8 纸电极还具有更高的生产率的内在潜力,因为纸基技术可以大规模和快速的线速生产并转化为产品。
摘要:在原子上薄的半导体中,CRSBR脱颖而出,因为它的散装和单层形式在磁性环境中均构成紧密结合的准二维激子。尽管对固态研究至关重要,但激子的寿命仍然未知。虽然Terahertz极化探测可以直接跟踪所有激子,而与带间选择规则无关,但相应的大型远场灶基本上超过了横向样品尺寸。在这里,我们将Terahertz极化光谱与近场显微镜结合在一起,以揭示CRSBR单层中的磁磁复发剂的飞秒衰减,该crsbr的单层比散装寿命短30倍。我们在散装CRSBR中揭示了结合和未结合的电子 - 孔对的低能指纹,并以无模型的方式提取单层的非平衡介电函数。我们的结果表明,首次直接访问CRSBR中准单维激子的超快速介电响应,可能会推进基于Ultrathin van der waals磁铁的量子设备的开发。关键字:原子上的固体,范德华磁铁,各向异性激子,超快动力学,飞秒近场显微镜,Terahertz
摘要。由于LED灯的发光功效非常高(超过160 lm/w),它们是当今照明应用中最喜欢的光源。LED模块的有用寿命超过50,000小时。使用SSL的灯的色素参数(固态照明)已经等于经典解决方案,尽管不久前它们明显更糟。颜色渲染指数(CRI)的高值和对发光通量的易于控制,导致带有LED的灯已成为非常有吸引力的解决方案。今天,最重要的问题问题是230 VAC电源提供的驾驶员。开关模式转换器(包括电解电容器)的寿命比LED的寿命短得多。本文讨论了直接从230 VAC电源提供的LED模块的替代驱动器的特征,并且不包含任何电解电容器。特别是,分析了具有一个或两个LED字符串的灯的功率因数和效率,并给出了有关此类灯的最佳设计的一些提示。这项工作的独特功能是对此类驱动程序电流中谐波内容物的详细分析,证明了它们符合相关标准。最后,提到了与考虑类型的供应类型有关的一些问题。
摘要:高能量容量的锂硫电池是先进储能领域的有希望的候选材料。然而,它们的应用受到可溶性多硫化物的穿梭和缓慢的转化动力学的阻碍,倍率性能差,循环寿命短。在此,单原子材料被设计用来加速锂硫电池的多硫化物转化。结构中的氮位点不仅可以锚定多硫化物以减轻穿梭效应,而且还可以实现单原子铁的高负载。密度泛函理论计算表明,单原子位点降低了电化学反应的能垒,从而提高了电池的倍率和循环性能。纽扣电池表现出令人印象深刻的能量存储性能,包括0.1 C 时1379 mAh g −1 的高可逆容量和5 C 时704 mAh g −1 的高倍率容量。电解质剂量/能量密度之比低至5.5 g Ah 1 −。它表现出优异的循环性能,即使在 0.2 C 下循环 200 次后容量保持率仍可达 90%。关键词:单原子材料、锂硫电池、快速多硫化物动力学、贫电解质、长循环寿命
在过去的十年中,慢性淋巴细胞性白血病(CLL)和小淋巴细胞淋巴瘤(SLL)的管理范式经历了前所未有的变化,从而导致患者的根本改善结果(1,2)。以前的治疗基石,细胞毒性化学疗法,导致许多患者的缓解,但也是短期和长期治疗相关的病因(3)。对于较差的风险疾病生物学患者,这些减免的寿命短(4,5)。相比之下,现在可以期望患者通过靶向疗法依次治疗,这些疗法既可以耐受,口服且明显更有效(6-10)。尽管现代靶向疗法产生了极大改善的结果,但这些药物现已被纳入常规临床实践,这足以使患者开始对多种类别产生抗药性或不耐受性(11-17)。这些患者代表了CLL/SLL中未满足医疗需求的新且快速增长的领域。确保CLL/SLL患者的持续进展将需要增加对通过多种靶向治疗治疗的新兴患者组的关注。在这里,我们专注于如何在现代治疗环境中最好地定义未满足的需求,并为关键利益相关者/护理人员提供了确保我们患者应得的持续创新的机会。
无人机 (UAV) 在许多国家的野外侦察领域中都占有重要地位。续航能力是无人机的主要问题之一,通常大多数飞机使用普通燃料,会造成污染,而且使用寿命短且价格昂贵。因此,迫切需要使用非廉价的可耗尽能源作为燃料。太阳能是可利用的可持续能源之一。飞行器优化设计的简化和规划对于扩大使用范围以培育具有强大续航能力和可靠性的亚音速无人机具有重要意义。本文介绍了一种太阳能无人机的概念和初步设计方法,以实现更高的续航能力。为了对太阳能无人机进行理论计算,从现有飞机和无人系统统计获取了一些数据。通过对以前的无人机进行历史分析,可以更好地理解设计和最佳配置选择。本文的主要目的是设计一款高续航能力的固定翼太阳能无人机。在初步设计中,使用 Autodesk Fusion 360 软件设计机翼几何形状和无人机系统。此外,计算出合适的翼展为 4m,以完成 3-D 太阳能无人机的设计。性能分析已使用各种参数进行了理论计算。已经进行了深入研究,以找到所需的光伏太阳能电池和要安装在系统中的电池类型,以便将太阳能系统纳入其中以实现长续航能力。最终目标是设计和分析一款太阳能无人机,用于长续航应用,并配备电池和太阳能电池。关键词:太阳能无人机、长续航能力、概念设计、理论计算、电池、太阳能电池
摘要:硝酸盐(GAN)中的缺陷单光子发射器(SPE)近年来由于其提供的优势而引起了人们的关注,包括在室温下操作,狭窄的排放线宽和高亮度。尽管如此,由于可能在GAN中形成的许多潜在缺陷,单光子发射机制的确切性质仍然不确定。在这项工作中,我们对从头算计算进行的系统研究表明,碳和硅作为氮化碳中的常见掺杂剂可以与GAN中的固有缺陷相互作用,并形成新的高速缺陷单光子来源。我们的发现确定了三元缺陷n ga v n c n,其寿命短于1 ns,而小零光子线(ZPL)为864 nm。换句话说,此缺陷可以用作短波长窗口中的高速单光子源进行纤维通信。在尖锐的对比度中,Si支持的缺陷N GA V n Si N具有较高的无占缺陷能水平,该缺陷能水平进入传导带,因此不适合单个光子发射。已经对潜在的缺陷,热稳定性和单光子发射特性进行了系统的研究。分别采用了perdew-burke-ernzerhof交换相关功能和HEYD-SCUSERIA-ERNZERHOF交换相关功能的放松计算和自洽计算。这些发现表明了通过碳或硅掺杂剂的高性能单光子来源的潜力。
冰层积聚是一种普遍存在的自然现象,对广泛的社会系统产生了严重而灾难性的影响。以前对防/除冰技术的研究主要集中在温和的实验室条件下,由于使用寿命短,实际适用性有限。因此,迫切需要开发能够承受复杂环境条件的耐用防/除冰技术。在这项研究中,我们成功配制了一种基于石墨烯的疏水涂层。为了规避与环境不友好的有机溶剂相关的挑战,我们使用石墨烯水浆作为基础材料,随后加入聚乙烯醇-水溶液。将所得溶液进行硅氧烷脲交联聚合物的原位聚合,得到所需的涂层溶液。经过溶液喷涂和干燥过程后,最终获得的产品是疏水导电石墨烯 (HCG) 硅氧烷涂层。 HCG硅氧烷涂层的电导率为66 S/m,仅需10秒即可融化冰滴,而传统涂层则需要20至500秒才能完成相同任务。在芬兰北极圈内的一座高山上进行了整个冬季的综合现场测试,结果表明,该涂层在约310 W/m 2 的功率下具有出色的防冰性能。此外,该涂层在约570 W/m 2 的功率下表现出令人满意的除冰性能,可在约10分钟内成功清除积冰。在整个现场测试过程中,温度经常骤降到20℃,同时风速高达12米/秒。材料特性表明,涂层表面的微纳米结构产生良好的疏水行为,这主要归因于亲水和疏水相互作用引起的相分离。此外,聚乙烯醇分子链和原位聚合硅氧烷脲形成的半互穿结构确保了涂层的强度。© 2023 越南国立大学,河内。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
然而,大多数固体电解质的电化学稳定窗口通常不够宽,无法实现锂金属与达到如此高能量密度所需的 4 V 级正极的稳定循环。[11–13] 相反,如果没有形成钝化界面,大多数固体电解质往往会在与锂金属的界面处发生化学或电化学还原和/或在与正极的界面处氧化,导致循环性能差和循环寿命短。[14,15] 此外,锂金属阳极在充电时容易形成所谓的锂金属枝晶,枝晶会渗透到固体电解质中并导致电池短路。电池放电时,在锂金属和固体电解质之间的界面处形成的空隙会导致电流收缩,并被证明会促进枝晶的形成。[16–20] 因此,固体电解质不仅需要与锂金属和正极形成稳定的界面,还必须能够稳定地电镀和剥离锂金属。与无机固体电解质相比,聚合物固体电解质通常更柔韧,在循环过程中能够与电极保持更紧密的接触,从而减轻了锂金属和固体电解质界面处空隙的形成。然而,较低的室温离子电导率和较窄的电化学稳定窗口阻碍了它们的应用。[21–23] 在聚合物固体电解质中加入增塑剂有助于提高室温下的离子电导率,同时保持聚合物的柔韧性。[24–26] 聚合物基质,包括聚环氧乙烷 (PEO)、[26–29] 聚丙烯腈 (PAN)、[30,31] 聚甲基丙烯酸甲酯 (PMMA)、[32,33] 和聚偏氟乙烯-共-六氟丙烯 (PVDF-HFP) [34–37] 和增塑剂,如碳酸盐 [38–40]