1. 量子力学 1.1. 斯特恩·格拉赫 1.2. 马赫-曾德干涉仪 1.3. 量子力学的假设 1.4. 薛定谔方程 1.5. X、P 交换子和海森堡原理 1.6. EV 炸弹 2. 量子计算 2.1. 单量子比特系统 2.1.1. 什么是量子比特 2.1.2. 叠加 2.1.3. 布雷克特符号和极坐标形式 2.1.3.1. 状态向量形式 2.1.3.2. 概率幅 (玻恩规则) [附证明] 2.1.4. 布洛赫球和二维平面 2.2. 测量 I: 2.2.1. 测量假设 - 测量时状态崩溃 2.2.2. 统计测量 2.2.2.1 QC 作为概率分布 2.2.2.2. 来自采样的概率 2.3. 单量子比特门 2.3.1. 旋转-计算-旋转 2.3.2. 幺正门计算 2.3.3. 泡利旋转的普遍性 2.4. 多量子比特系统 I: 2.4.1. 通过张量积实现多量子比特叠加。 2.4.2. 多量子比特门 2.4.2.1. 本机(CNOT) 2.4.2.2. 单量子比特门组合 2.4.2.3. 泡利 + CNOT 普遍性 2.4.3. 德意志-琼扎实验 2.4.4. 无克隆定理 2.5. 纠缠 2.5.1. 贝尔态 2.5.2. 密度矩阵 2.5.3. 混合态 2.5.4.量子隐形传态 2.6. 测量 II: 2.6.1. 量子算子 2.6.2. 射影测量
在人类的空间意识中,3-D投影几何结构结构信息整合和行动计划,通过视角在内部表示空间内采取。不同观点与世界模型相关的方式并改变了特定的感知和想象方案。在数学中,这种转换的收集对应于一个“群体”,其“动作”表征了空间的几何形状。将世界模型与群体结构相关联,可以捕获不同的代理人的空间意识和负担能力方案。我们将小组动作用作特殊的策略,以进行视角依赖控制。我们探讨了这种几何结构如何影响代理的行为,并比较了欧几里得与投射组如何在主动推断,好奇心和探索行为中对认知价值作用。我们正式演示并模拟了各组如何在简单的搜索任务中诱导不同的行为。根据框架的选择,投影组的非线性放大信息会转化认识价值,从而为感兴趣的对象产生了方法的行为。代理商世界模型中的投射组结构包含了射影的意识模型,该模型已知可以捕获意识的关键特征。另一方面,欧几里得群体对认知价值没有影响:没有动作比最初的闲置状态更好。在构造代理的内部表示形式时,我们展示了几何形状如何在信息集成和行动计划中起关键作用。关键字:几何世界模型;勘探;体现认知科学;认知建模;感知效果耦合
量子力学 (2ECTS) Kris Van Houcke 1. 回顾量子力学的基础,量子力学的假设,薛定谔/海森堡/相互作用图像,两能级系统和布洛赫球 2. 量子力学与经典力学的关系,费曼路径积分表示 3. 多体系统,二次量化,多粒子系统的路径积分表示,量子蒙特卡罗和费米子符号问题 4. 弱相互作用玻色子的波格留波夫理论 5. 纯态与混合态,密度算子,约化密度算子,纠缠,(可能是:EPR悖论和贝尔定理) 6. 开放量子系统,算子和表示,量子测量,林德布拉德表示,波恩-马尔可夫主方程 量子信息论简介 (2ECTS) Alain Sarlette、Harold Ollivier 1. 状态:密度矩阵、内积、范数、保真度、 TVD、状态分解(Schmidt、Pauli)2. 算子(1):酉表示、CPTP 映射、其他表示(大酉/Kraus/Choi)3. 算子(2):Pauli 算子、作用于算子代数的通道、从交换关系中恢复子系统、Clifford 层次结构、受限操作类(LOCC、LO1WCC)4. 测量:射影测量、更新规则、POVM、非交换/联合可测性5. 纠缠:纠缠测量、纠缠单调、纠缠提炼、使用纠缠(隐形传态、交换、门隐形传态、与 Choi 的关系、超密集编码)6. 状态辨别:假设检验、熵、Holevo、条件熵/互信息/强子可加性、数据处理不等式、相对熵、平斯克
PHY-929,量子计算 学分:3-0 先修课程:无 目标和目的:这是一门研究生课程,针对具有经典计算和量子力学基础知识的学生。本课程介绍量子计算的基本结构和程序。它解释了计算中的量子加速及其在 Shor 因式分解算法、Grover 搜索算法和量子纠错中的应用。本课程的一部分还专门介绍了量子门在量子信息处理中的应用。核心内容:量子比特、量子门、量子算法、量子纠错、量子信息应用 详细课程内容:动机。量子比特。量子力学简介、密度矩阵、施密特分解、张量积、量子纠缠、量子测量、射影测量、POVM、计算机科学简介、如何量化计算资源、计算复杂性、决策问题和复杂性类别 P 和 NP、大量的复杂性类别、能量与计算、量子门:量子算法、单量子比特操作、受控操作测量、通用量子门量子门:量子电路模拟、量子算法、Deutsch、Josza、量子傅里叶变换、因式分解、顺序查找、量子傅里叶变换的应用:周期查找、离散对数、隐藏子群问题、量子相位估计、Bernstein Vazirani 算法、量子搜索算法:Grover 算法、求解线性方程 HHL 算法、量子纠错:三量子比特位翻转码、三量子比特相位翻转码、肖尔码、CSS 码、稳定器码、量子信息应用, QKD、量子密集编码、量子隐形传态、量子计算机的物理实现:概述全部内容并详细介绍三者
量子技术 2.0 全面发展道路上的一个关键障碍 [ 1 ] 与最初刺激其发展的情况相同:用经典方法有效模拟足够大的量子相干结构根本不可能。实际上,“足够大”的系统是由一百个左右量子比特组成的,但这个数字仍然太小,不足以组成能够模拟其他“足够大”的量子系统的量子计算机。另一方面,由数千个量子比特组成的人工量子相干系统正在被制造出来 [ 2 ],甚至得到成功应用,如商用量子退火炉 [ 3 , 4 ]。超导量子比特阵列也被认为是能够超越标准量子极限的微波探测器(例如,在搜索银河系轴子等应用中 [ 5 ])。阵列的量子相干性是检测机制的关键要素。这种“量子容量差距” [6] 需要得到弥合,以便系统地开发量子技术 2.0 的全部潜力,例如有噪声的中型量子 (NISQ) 设备 [7] 和通用容错量子计算机。对大型量子系统进行有效的经典模拟并不是绝对不可能的,因为它涉及对这种系统的任意演化的模拟,即其状态向量可以到达其所有(指数高维)希尔伯特空间,并且可能在有限时间内做到这一点。Margolus-Levitin 定理及其推广 [8-13] 对这种演化的速度进行了限制,从而限制了在任何有限时间间隔内可访问希尔伯特空间的部分。这与 [14] 的证明相一致,即在系统尺寸呈多项式缩放的时间内,任意时间相关局部哈密顿量可以生成的所有量子多体态的流形在其希尔伯特空间中占据的体积呈指数级小。(这是一个字面上正确的表述,因为量子比特系统的希尔伯特空间是一个有限维复射影空间;也就是说,它是紧致的,而且它有一个酉不变的富比尼-施图迪度量 [15])。数值和分析研究还表明,描述
Shor 的论文对密码学界造成了威胁,人们意识到了后量子系统的必要性。2016 年,美国政府机构国家标准与技术研究所 (NIST) 呼吁开发新的后量子密码算法,以便在不久的将来系统化后量子候选算法 [11],并于 2019 年根据各种数学问题公布了 17 个公钥加密和密钥建立算法候选算法和 9 个数字签名算法候选算法 [10]。目前,有五个主要的后量子研究领域正在进行,其中四个在 [3] 中进行了讨论,包括基于格问题的基于格的密码学、基于解码一般线性码的基于代码的密码学,这是一个 NP 完全问题 [2]、基于求多元二次映射的逆的难度或等价于求解有限域上的一组二次方程的多元密码学,这是一个 NP 难问题、基于单向哈希函数的基于哈希的密码学和基于同源问题的基于同源的密码学,例如 [5, 4]。在本文中,我们提出了一种密钥交换协议,其安全性依赖于计算代数几何中的各种问题,例如求解大型多变量高次多项式方程组,或者寻找由多个多变量多项式生成的理想的初等分解,我们推测这些问题是量子安全问题。简而言之:Alice 通过 Segre 和 Veronese 映射选择一个嵌入在大型射影空间中的二次曲面。她提供了一些信息,例如嵌入和品种的自同构,以便 Bob 可以生成达成一致公共密钥所需的嵌入。Bob 和 Alice 都有各自的嵌入,通过这些嵌入他们可以隐藏他们的秘密二次曲面,而是发布包含各自嵌入图像的相应超平面。现在,通过使用他们的私有嵌入,他们计算彼此超平面的拉回,恢复(2,2)齐次曲线,并最终计算组件的 j 不变量。在一些启发式假设下,双方都能够以高概率获得此类组件。j 不变量相等,这是 Alice 和 Bob 的共同密钥。尽管公开数据可用,但由于对潜在问题的假设,攻击者无法恢复私有数据的信息。
m k l(v)ρl(v)†dµ(v),l:m k→m k是可测量的函数,µ是m k的度量。在最近的一项工作[8]中,当L恒定并且等于身份矩阵时,作者考虑了此类通道φL的Lyapunov指数。在这篇论文中还考虑了φ-erg属性和纯化条件(请参见第6节的定义)。在上一篇论文(请参见[11])中,我们表明,对于固定度量µ,它对函数lφ-erg属性是一般性(实际上,我们表明了不可约性条件是通用的)。这里的新颖性是,我们将证明纯化条件在L上也是固定度量µ的通用(请参见第9节)。此变量L的引入使我们能够在这种类型的问题中考虑通用性质的问题。我们在复杂矩阵集中使用C 0拓扑。对于附录第10节中读者的好处,我们介绍了[11]中的结果和Lyapunov指数与预先作品的关系的概述。在[8]之后,一个人可以考虑与l和µ相关联,两个相关的程序:一个用x n,n∈N表示,在射影空间p(c k)上取值;另一个用ρn,n∈N表示为d k(其中d k是一组密度运算符)。自然过渡概率在[8]中定义。分析这两个过程的ergodic属性时,φ-erg属性和纯化特性起着重要作用(请参见第6节)。在这里,我们考虑了第8节中通道的量子熵的概念,该概念最初在[3]中介绍。这表明引入的概念是自然的。对于固定的µ和一般L,在[11]中提出了熵的自然概念(请参阅未来第3节),以便在这种情况下开发吉布斯形式的版本。在[11]中的示例8.5中也介绍了某个通道(与固定马尔可夫链有关),其中使用该定义获得的值与熵的经典值相吻合。熵的这种定义是对论文[3],[5]和[4]的概念的概括。这种特殊形式的定义熵在某种程度上是受[28]的结果启发的,该结果考虑了迭代功能系统。我们称[11]中示例8.5中描述的示例在量子信息中的Markov模型中称为示例。这是我们第8节中考虑的主要例子。
拓扑量子计算 (TQC) 是一种量子计算方法,旨在通过利用由非阿贝尔任意子组成的非局部自由度的拓扑属性来最小化硬件层面的退相干 [1-3]。后者是奇异的准粒子激发,具有非平凡的交换统计数据,用辫子群的多维表示来描述。非阿贝尔任意子集合嵌入在退化基态流形中,这允许非局部存储量子信息并通过编织实现幺正变换来处理它。在所有非阿贝尔任意子中,马约拉纳零能量模式 (MZM) 是最有希望用于 TQC 开发的模式 [4-8],因为它们是凝聚态系统中最可行的模式。过去十年,开创性的实验确实在多个不同平台上为它们的存在提供了强有力的证据,如近邻半导体纳米线[9-12]、磁性吸附原子链[13,14]、拓扑超导体内的涡旋[15,16]、平面约瑟夫森结[17,18]和近邻量子自旋霍尔边缘[19,20]。基于马约拉纳量子计算机的构建块是马约拉纳量子比特,由四个马约拉纳零点模型组成。通过物理编织这些马约拉纳零点模型,可以实现所有单量子比特 Clifford 门 [21-23]。这些门受到拓扑保护,因为它们的结果完全取决于 2+1 维空间中任意子绝热遵循的轨迹的拓扑。重要的是,一对 MZM 的编织可以通过多种方式实现,这些方式都等同于两个非阿贝尔任意子的物理交换 [ 24 – 30 ] 。事实上,通过考虑额外的 (混合的) 辅助马约拉纳粒子的存在,我们可以通过适当调整不同 MZM 之间的成对耦合 [ 31 , 32 ] 或通过执行顺序射影宇称测量 [ 8 , 33 – 38 ] 来进行编织。非 Clifford 操作(如 T 门)无法通过马约拉纳编织实现,并且必然依赖于没有拓扑保护的实现,并且需要额外的纠错方案(如魔法态蒸馏)[ 23 , 39 ] 。为了实现通用量子计算,单量子比特门必须补充纠缠门,如 CNOT 门。遗憾的是,这种两量子比特 Clifford 门无法在可扩展架构中仅通过马约拉纳编织操作实现 [22, 40]。基于测量的方法使我们能够克服这个问题,通过对(联合)马约拉纳奇偶性进行高保真投影测量来实现 CNOT 门 [8, 35, 41 – 44]。然而,尽管基于测量的 TQC 已被证明对未来开发完全可扩展的拓扑量子计算机非常有价值,但所需的测量协议仍然是一项艰巨的挑战 [35,45,46]。因此,目前,最好设计和描述替代方案,这些方案不依赖于高保真测量,但仍允许稳健地纠缠不同的拓扑量子位。在这项工作中,我们提出了一种基于完整方法的 CNOT 门的无测量实现。完整量子计算的关键思想是利用非阿贝尔几何相在底层哈密顿量的退化特征空间上实现幺正运算 [47]。当系统参数沿着参数空间中保持退化的闭环进行调整时,就会出现这些规范不变相。这种方法相当通用,已经在非拓扑量子计算方案中成功运用 [47-49]。因此,在 TQC 中使用完整技术也很有意义。事实上,马约拉纳粒子的编织过程本身可以解释为一个完整的过程,其中系统遵循成对马约拉纳粒子耦合的三维参数空间中特定的、拓扑保护的环路 [8, 31]。完整的编织描述的优点是它可以很容易地推广,既可以通过考虑具有不同拓扑结构的环路来实现,也可以通过考虑具有不同拓扑结构的环路来实现。