系统性红斑狼疮 (SLE) 的发病率和死亡率是由严重的组织破坏性炎症反应引起的。巨噬细胞迁移抑制因子 (MIF) 是 SLE 疾病严重程度的上游细胞因子和遗传决定因素。具有高表达 MIF 等位基因的白种人和非裔美国人 SLE 患者的浆膜炎、肾炎和中枢神经系统疾病发病率显著增加。最近对 MIF 作用机制的一系列见解包括:1) 其在 NF- κ B 和炎症小体活化中的激活作用,2) 识别激活 MIF 变体启动子微卫星 (-794 MIF CATT5-8) 的独特转录因子 ICBP90,3) “人性化” MIF 小鼠的开发,以及 4) 发现阻断 ICBP90 与 CATT 微卫星相互作用的小分子抑制剂 (CMFT),为开发 SLE 治疗的精准医疗方法创造了机会。我们将追求两个具体目标:
摘要:随着分子生物技术的不断进步,许多新的细胞死亡方式被发现。细胞焦亡是一种程序性细胞死亡过程,其在细胞形态和功能上不同于细胞凋亡和自噬。与细胞凋亡和自噬相比,细胞焦亡主要由细胞内的炎症小体和Gasdermin蛋白家族中的Gasdermin D介导,并参与多种炎症因子的释放。细胞焦亡参与了传染病以及神经系统、心血管系统等疾病的发生发展。近年来的研究也报道了肿瘤细胞中发生细胞焦亡,因此探讨其对肿瘤的影响成为研究热点之一。本文对细胞焦亡的最新研究进展,特别是在妇科肿瘤发展中的作用进行综述。随着对妇科肿瘤发病机制的进一步了解,为妇科肿瘤的预防和临床治疗提供了新的靶点。
表观遗传学是指所有在不改变基因序列的情况下调节基因表达的可逆、可遗传过程。研究表明,DNA和组蛋白可以发生甲基化和乙酰化等化学修饰(仅对组蛋白而言),这些修饰可以引导DNA缠绕在组蛋白周围[5],并决定染色质的压缩。这些化学修饰通常被称为表观遗传“标记”。DNA和组蛋白之间的相互作用可以导致真染色质构象,在这种构象下基因可接近并因此被激活,或者导致异染色质构象,在这种构象下基因无法接近并因此受到抑制[6]。除了DNA和组蛋白修饰之外,其他机制也参与表观遗传调控,如核小体定位[7]和非编码RNA[8]。在这里,我们选择关注与衰老相关的研究最多的 DNA 和组蛋白修饰,尽管重要的是不要忘记所有表观遗传机制都是相互联系、相互影响的 [ 9 , 10 ]。例如,DNA 甲基化失调会诱导
Alexander So 是洛桑大学医院风湿病科主任,也是洛桑大学风湿病学教授。他在剑桥和伦敦接受了医学培训,并在伦敦大学获得博士学位。他的研究兴趣是微晶体在风湿病中的作用,特别是在痛风和骨关节炎中。他与 Jürg Tschopp 的合作促成了使用 IL-1 抑制剂治疗急性痛风,并参与了多项 IL1 抑制剂治疗晶体疾病的临床和实验研究。Fabio Martinon 因在 Jürg Tschopp 实验室对炎症小体进行表征而获得瑞士洛桑大学博士学位。他曾在波士顿哈佛大学公共卫生学院 Laurie H. Glimcher 实验室接受博士后培训。他目前是洛桑大学生物化学系副教授。他的实验室专注于表征细胞稳态紊乱引发的信号通路及其在炎症、炎症疾病和癌症中的作用。
转录调控是一个复杂的过程,涉及特定染色质环境中的一系列蛋白质活动。转录因子 (TF) 是此过程的主要贡献者,它们与伙伴、辅激活因子或表观遗传因子一起发挥作用,其中一些被称为先驱 TF,能够使染色质结构允许辅激活因子和表观遗传因子的作用。表观遗传景观在造血稳态和分化程序中起着重要作用;因此,有可能从染色质动力学构建一个完整的造血模型 ( 1 , 2 )。编码表观遗传修饰因子 (TET2、IDH1 / 2、DNMT3A 和 ASXL1) 的基因突变在急性髓系白血病 (AML) 患者中很常见,进一步表明这种类型的成分在驱动 AML 发展中起着重要作用。 TF SPI1 / PU.1 属于 E26 转化特异性 (ETS) 家族,是造血控制的主要贡献者,在髓系和 B 淋巴系的特化和分化中发挥积极作用 ( 3–5 )。SPI1 最初被描述为一种转录激活因子,被认为是一种先驱 TF,因为它能够结合或接近封闭的核小体构象,并使辅因子能够结合染色质 ( 6–9 )。例如,在巨噬细胞中,SPI1 通过结合封闭的染色质来激活其靶基因的转录,在那里它通过募集表观遗传修饰因子(如 CBP/P300 或 SWI/SNF 复合物)来驱逐核小体 ( 6 、 7 、 10 、 11 )。这一动作指示创建一个新的增强子,使组蛋白 3 的赖氨酸 4 (H3K4me1) 单甲基化,并在增强子位点募集额外的 TF (6,7)。SPI1 通过表观遗传调控控制转录激活的功能在 B 淋巴细胞和破骨细胞分化中也有描述 (12,13)。因此,除了与谱系决定辅因子协同控制基因表达方面发挥众所周知的作用外,SPI1 对转录活性的影响还与表观遗传调节因子协同介导。最近有报道称,SPI1 在正常造血、控制适当的中性粒细胞免疫反应 (14)、早期 T 细胞 (15,16) 和破骨细胞 (12) 中抑制转录。实现更好的
摘要 乙酰胆碱信号传导对于认知功能至关重要,可抑制炎症。为了维持体内平衡,胆碱能信号传导受到蛋白质和非编码微小 RNA(“CholinomiR”)的多层次和双向调节。CholinomiR 通过靶向主要胆碱能转录物(包括乙酰胆碱水解酶乙酰胆碱酯酶 (AChE))来协调胆碱能信号的认知和炎症方面。值得注意的是,AChE 抑制剂是目前唯一获准治疗阿尔茨海默病患者的药物。由于胆碱能信号传导可抑制阿尔茨海默病固有的神经炎症,因此改变 AChE 特性及其对抑制剂和/或 CholinomiR 调节的敏感性的基因组变化可能会影响炎症小体成分(如 NLRP3)的水平和特性。这就需要基于基因组的医学方法,该方法基于参与胆碱能信号传导的基因中编码和非编码单核苷酸多态性 (SNP) 的基因分型。
在体内对先锋因素与染色质的接口如何促进转录控制的可及性。在这里,我们通过活果蝇血细胞中的原型GAGA先驱因子(GAF)直接可视化染色质关联。单粒子跟踪表明,大多数GAF是染色质结合的,稳定的结合分数显示出在染色质上存放在染色质上的核小体样限量超过2分钟,比大多数转录因子的动态范围更长。这些动力学特性需要GAF的DNA结合,多聚化和本质上无序的结构域的完全补充,并且是招募的染色质重塑剂NURF和PBAP的自主性,其活动主要使GAF的邻居受益于HSF,例如HSF。对GAF动力学的评估及其内源性丰度表明,尽管有势动力学,但GAF组成且完全占据了染色质靶标,从而提供了一种时间机制,从而维持对体内稳态,环境和发育信号的转录染色质的开放式染色质。
凋亡是一种依赖于胱天蛋白酶级联激活的程序性细胞死亡,它调节从胚胎发育到免疫稳态的许多过程,并在癌症中发挥重要作用。逃避凋亡确实是肿瘤细胞的基本特征之一,肿瘤细胞经常表现出主要促存活的 BCL-2 同源物 BCL-2、BCL-xL 和/或 MCL-1 表达增加,导致肿瘤进展或对抗癌治疗产生耐药性 [1]。线粒体外膜通透性 (MOMP) 是细胞凋亡中的关键细胞事件,因为随后细胞色素 c (cyto-c) 从线粒体膜间隙通过 BAX/BAK 孔释放到细胞溶胶,促进凋亡小体形成和下游凋亡效应胱天蛋白酶的激活。 MOMP 还可以导致其他线粒体成分(包括线粒体 DNA)的释放,这些成分参与由凋亡性胱天蛋白酶抑制的其他炎症信号通路 [2,3]。BCL-2 家族蛋白
2025 年 1 月 18 日 孟买证券交易所 (BSE) 有限公司代码:532321 PJ Towers, Dalal Street, Mumbai-400001 印度国家证券交易所有限公司代码:Zyduslife Exchange Plaza, C/1, Block G, Bandra-Kurla Complex, Bandra (East), Mumbai-400051 主题:新闻稿 先生/女士 附件是 2025 年 1 月 18 日的新闻稿副本,标题为“Zydus Lifesciences 获得 USFDA 批准,对 Usnoflast 进行 II(b) 期临床试验,Usnoflast 是一种用于治疗肌萎缩侧索硬化症 (ALS) 患者的新型口服 NLRP3 炎症小体抑制剂”。新闻稿内容详尽。请将上述新闻告知交易所成员和广大投资者。由于团队之间的协调分布在全球不同的时区,新闻稿的提交被延迟。谢谢您, 您忠实的, 对于, ZYDUS LIFESCIENCES LIMITED DHAVAL N. SONI 公司秘书 附件: 如上所述
摘要组蛋白伴侣染色质组装因子1(CAF-1)沉积了两个新生的组蛋白H3/H4二聚体在新复制的DNA上,形成了核小体的中心核心,称为Tortasome。CAF-1如何确保有足够的空间来组装四面体。Caf-1的赖氨酸/谷氨酸/精氨酸(KER)区域的结构和生物物理表征揭示了具有前所未有的DNA结合特性的128-Å单α-螺旋(SAH)基序。不同的KER序列特征和SAH的长度驱动Caf-1对于四长长的DNA的选择性,并促进发芽酵母中的功能。在体内,KER与CAF-1中的DNA结合的有翼螺旋结构域合作,以克服DNA损伤敏感性并保持基因表达的沉默。我们建议KER SAH将CAF-1中的功能域与结构精度联系起来,在染色质组装过程中充当DNA结合间隔元件。