超冷极性分子在量子模拟、计量和信息处理方面具有巨大潜力,因为它们具有强电偶极 (ED) 相互作用,这种相互作用既长距离,又各向异性,更重要的是,可调 [1 – 16] 。将它们用于这些目标的必要条件是能够利用其固有的 ED 相互作用来创建高度纠缠和长寿命的分子状态,这些状态对环境退相干具有鲁棒性,例如用于增强传感的自旋压缩态 [17 – 19] ,或用于基于测量的量子计算的簇状态 [20 – 25] 。到目前为止,简单的双碱分子(如 KRb)的旋转态已被提议作为编码量子比特的主要主力和自然自由度 [1 – 12] 。这是因为长寿命旋转态可以通过长程电致发光相互作用直接耦合,并由微波 (mw) 场操纵 [26,27] 。然而,旋转态具有重要的局限性,阻碍了它们用于纠缠生成:(1) 在不同旋转状态下制备的超冷分子通常会经历不同的捕获势,因此容易受到不良退相干的影响,导致相干时间短 [28 – 30] ; (2) 多体哈密顿参数的微调需要使用强大且控制良好的直流电场 E [1,11] 。由于这些场需要时间来切换和变化,因此使用旋转态之间的长程电致发光相互作用按需生成纠缠仍然是一项重大的实验挑战。为了克服这些重要的限制,我们在此提出利用超冷极性分子中可访问的更大的内部能级集,其中包括核和/或电子自旋能级以及它们的旋转结构。总的来说,这些能级可以用作按需纠缠生成的强大资源。通过将有效自旋-1 = 2 编码为一组核自旋和旋转分子能级,我们利用了长
摘要背景:引起人们对接受非典型神经摄影药物治疗的2型糖尿病患者的治疗的关注,并记录即使在这种治疗下的患者中,内分泌图片的缓解也可能发生。据我们所知,这是首次显示使用非典型抗精神病药开始治疗后2型糖尿病的报告。病例表现:我们描述了一名患者,该患者在2001年被诊断出患有2型糖尿病,并接受了胰岛素治疗。他始于2014年,一种非典型的抗精神病药疗法,用于fondazione policlinico gemelli,其生活方式平行(即饮食和多周的体育活动)的平行变化。在2019年,经过4年综合糖尿病精神疗法,患者的内分泌学情况已缓解,患者能够停止胰岛素治疗,目前仅接受口服抗糖尿病药物。结论:尽管有证据支持抗精神病药与精神病患者的2型糖尿病之间的关联,但尚未建立因果关系。如本案例报告所示的生活方式可能是基于这些患者2型糖尿病的高患病率,并且还与其缓解的可能性有关。考虑到2型糖尿病患者的发病率高和死亡率高,尤其是在这些患者中最高的SARS-COV-2大流行病和最高的感染率。关键字:类型2糖尿病;非典型抗精神病药;躁郁症;合并症;生活方式;案例报告;胰岛素;口服抗糖尿病药
摘要:K最近邻算法是应用最为广泛的分类算法之一,但其高时间复杂度限制了其在大数据时代的性能。量子K最近邻算法(QKNN)可以满意地处理上述问题,但直接应用传统的基于欧氏距离的相似性度量会牺牲其准确率。受极坐标系和量子特性的启发,本文提出一种新的相似性度量来取代欧氏距离,将其定义为极坐标距离。极坐标距离同时考虑角度和模数长度信息,引入一个根据具体应用数据调整的权重参数。为了验证极坐标距离的效率,我们使用几个典型数据集进行了各种实验。对于传统KNN算法,使用极坐标距离进行相似性度量时准确率性能相当,而对于QKNN算法,其分类准确率明显优于欧氏距离。此外,极坐标距离表现出优于欧氏距离的可扩展性和鲁棒性,为 QKNN 在实践中的大规模应用提供了机会。
硅基氮化镓高电子迁移率晶体管 (HEMT) 以其低成本、大面积应用等优势在功率器件应用领域引起了广泛关注 [1]。近年来,双向开关在轧机、电梯、风力发电等许多工业双向功率转换应用中备受青睐。此外,常闭单向 HEMT 是实现高性能双向开关的重要器件 [2,3]。常闭单向 HEMT 通常通过在 HEMT 的漏极中嵌入肖特基势垒二极管 (SBD) 来实现。目前已经采用了氟注入或金属氧化物半导体技术。然而,在常闭单向 HEMT 中尚未见具有良好阈值电压 (V th ) 可控性和稳定性的 p-GaN 栅极技术 [4] 的报道。此外,凹陷式肖特基漏极[5]和场板技术[6]可以为实现具有小开启电压(V on )、高击穿电压(BV)和良好动态性能的单向HEMT提供相关参考。本研究通过实验证明了一种具有凹陷肖特基漏极和复合源漏场板的单向p-GaN HEMT(RS-FP-HEMT)。研究并揭示了漏极电压应力对动态性能的影响。实验。图1(a)和(b)分别显示了传统的带欧姆漏极的p-GaN HEMT(C-HEMT)和提出的RS-FP-HEMT的示意横截面结构。这两个器件都是在GaN-on-Si晶片上制造的。外延结构由 3.4 µ m 缓冲层、320 nm i-GaN 沟道层、0.7 nm AlN 中间层、15 nm Al 0.2 Ga 0.8 N 阻挡层和 75 nm p-GaN 层(Mg 掺杂浓度为 1 × 10 19 cm −3)组成。器件制造首先通过反应离子刻蚀 (RIE) 形成 p-GaN 栅极岛。然后,蒸发 Ti/Al/Ni/-Au 金属堆栈并在 N 2 环境中以 850 ◦C 退火 30 秒。形成凹陷的肖特基漏极
摘要 强近红外 (NIR) 激光脉冲与宽带隙电介质相互作用会在极紫外 (XUV) 波长范围内产生高次谐波。这些观测为固体中的阿秒计量提供了可能性,精确测量各个谐波相对于 NIR 激光场的发射时间将大有裨益。本文表明,当从氧化镁晶体的输入表面检测到高次谐波时,对 XUV 发射的双色探测显示出明显的同步性,这与块体固体中电子-空穴再碰撞的半经典模型基本一致。另一方面,源自 200 μ m 厚晶体出口表面的谐波双色光谱图发生了很大变化,表明传播过程中激光场畸变的影响。我们对 XUV 能量下亚周期电子和空穴再碰撞的跟踪与阿秒脉冲固态源的开发有关。
摘要。核自旋能级在理解镧系元素单分子磁体中的磁化动力学以及量子比特的实现和控制方面起着重要作用。我们使用包括自旋轨道相互作用在内的多配置从头算方法(超越密度泛函理论)研究了阴离子 DyPc 2(Pc=酞菁)单分子磁体中 161 Dy 和 163 Dy 核的超精细和核四极相互作用。之所以选择 Dy 的两种同位素,是因为其他同位素的核自旋为零。这两种同位素的核自旋 I = 5 / 2,尽管核磁矩的大小和符号彼此不同。电子基态和第一激发的 Kramers 双线之间的巨大能隙使我们能够将微观超精细和四极相互作用汉密尔顿量映射到电子伪自旋 S eeff = 1 / 2 的有效汉密尔顿量上,这对应于基态 Kramers 双线。我们的从头算表明,核自旋和电子轨道角动量之间的耦合对超精细相互作用贡献最大,并且 161 Dy 和 163 Dy 核的超精细和核四极子相互作用都比 TbPc 2 单分子磁体中的 159 Tb 核的要小得多。计算出的电子-核能级分离与 163 DyPc 2 的实验数据相当。我们证明 Dy Kramers 离子的超精细相互作用会导致零场下的隧道分裂(或磁化的量子隧穿)。这种效应不会发生在 TbPc 2 单分子磁体中。发现 161 DyPc 2 和 163 DyPc 2 避免的能级交叉的磁场值明显不同,这可以从实验中观察到。
扩张的超电气体很容易控制的系统,其从根本上通过截距相互作用确定。在具有超重气体的典型实验中,这些作用主要是短侧和各向同性的。近年来已经开始研究新一代的实验,在这种实验中,与长距离相互作用和各向异性二酚二波尔相互作用的其他相互作用起着重要甚至显着的作用。如果偶极气在光学网格中,二旋二波相互作用的古代摄入症引起的效果得到了显着理解。在这项工作中,研究了这种偶性气体系统中的光网格中发生的新现象。
“北方·克里希·维斯瓦维迪亚亚(Uttar Banga Krishi Viswavidyalaya)”是由2000年的西孟加拉邦法案建立的,并从2001年2月1日开始运作。头部区域位于库奇·贝尔(Cooch Behar)区(43 m msl)的农村街区Pundibari,距离地区头部13公里。大学提供农业,园艺和技术的本科课程(Agril。工程);农业,园艺和林业的农业和园艺研究生课程。最近的火车站是新的Cooch Behar,位于加尔各答和古瓦哈蒂火车路线之间。距离Pundibari 15公里,距离Cooch Behar Town 11公里。它位于国家高速公路(NH 31)的侧面,该公路从库赫·贝尔(Cooch Behar)到西里古里(Siliguri)。最近的机场是距大学总部150公里的巴格多格拉。
正式论证已成为人工智能领域内的一个充满活力的研究领域。尤其是,形式论证的辩证性质被认为是共同的人机推理和决策的有前途的促进者,也是亚符号和符号AI之间的潜在桥梁[1]。在正式的论点中,参数及其关系作为指示图表示,其中节点是参数,边缘是参数关系(通常:攻击或支持)。从这些论点图中,得出了有关参数的可接受性状态或优势的推论。一种正式的论证方法正在增加研究的注意力是定量双极论证(QBA)。在QBA(通常是数值)权重(通常是数值的)权重(如此公认的初始优势)中分配给了参数,并且参数通过支持和攻击关系连接。因此,通过节点的传入边缘直接连接到节点的参数可以称为攻击者和支持者(取决于关系)。给出了定量的双极论证图(qbag),然后论证语义渗透了论证的最终强度。从直觉上讲,论点的攻击者倾向于降低其最终力量,而支持者倾向于增加它的最终力量。通常,正式论证和QBA的新生应用通常与解释性相关[2,3],例如,在可解释的推荐系统[4]的背景下,回顾聚合[5]或机器学习模型,例如随机森林[6]或神经网络[7]。这遵循上述参数影响的直觉为了利用QBA作为解释性的促进者,至关重要的是,对一种论点对另一个论点的影响有一种严格的理解,这一点至关重要。