摘要:古气候代理揭示了在过去的冰川间隔中被称为Dansgaard - Oeschger(DO)事件的北大西洋气候的突然过渡。DO事件的主要特征是在绿地中突然变暖,标志着相对温和的相对阶段,称为间质。这些表现出数百至几千年的逐渐冷却,直到最终的降低使温度恢复到冷场水平。到目前为止,这种千禧一代可变性背后的确切机制仍然没有定论。在这里,我们提出了一个令人兴奋的模型来解释Dansgaard - Oeschger Cycles,该模型以噪声诱导的状态空间偏移而发生,在该模型中。我们的模型包括代表北极大气温度,北欧海洋温度和海冰覆盖的四个动态变量之间的相互尺度相互作用,以及大西洋子午线翻转循环。该模型的大气 - 海洋热量由海冰主持,这又受到快速发展的间歇性噪声动态产生的大型扰动。如果超临界,扰动触发了类似的状态空间段游览,在此期间,所有四个模型变量都经历了定性变化,而定性变化始终类似于相应的代理重新质量中的星座的特征。作为一个产生噪声的物理间歇过程,我们提出了海洋或大气阻塞事件中的对流事件。我们的模型准确地重现了DO循环形状,返回时间以及间质和体积持续时间对背景条件的依赖性。与普遍的理解可变性是基于基础动力学的双态性的相反,我们表明,多尺度,单稳定的兴奋动态为解释与事件相关的千禧年气候变化提供了一种有希望的替代方案。
在过去的几十年中,抗生素耐药基因的传播对人类健康构成了重大威胁。尽管植物层代表了至关重要的微生物库,但对人类干扰较少的自然栖息地中ARG的概况和驱动因素知之甚少。为了最大程度地减少环境因素的影响,我们在这里收集了从初级植被继承序列的早期,中和晚期阶段收集的叶片样品,以研究植物层在自然栖息地中如何发展。拟层gr。细菌 - 养分和叶片营养素含量,以评估其对植物圈args的贡献。总共确定了151个独特的ARG,涵盖了几乎所有公认的主要抗生素类别。我们进一步发现,由于植物圈的波动栖息地和植物个体的特定选择效应,在植物群落继承过程中存在一些随机和核心集。由于植物群落继承过程中植物层细菌的多样性,综合性的复杂性和叶片养分含量的减少,Arg的丰度大大减少。虽然土壤和落叶之间的紧密联系导致叶子中的arg丰度比新鲜的叶子更高。总而言之,我们的研究表明,植物圈在自然环境中拥有广泛的ARG。这些植物层args由各种环境因素驱动,包括植物群落组成,宿主叶特性和植物圈微生物组。
Maiaspina 冰川是兰格尔-圣伊莱亚斯国家公园和保护区内最大的冰川(图 1)。该冰川面积超过 2,650 平方公里。被复杂的褶皱冰碛系统覆盖,这是 Ma&pin& 支流之间的流入速率和体积差异的结果。在其下游,冰川形成一个宽阔的球状。缓坡的山麓叶。该叶面积超过 1,500 平方公里,是美国地质调查局 (USGS) 正在进行调查的地点。将现场观察和测量与数字遥感数据的实验室分析相结合。尽管美国地质调查局自 19 世纪中叶以来就一直积极调查马拉斯皮纳冰川及其周边地区,但拉塞尔于 19 世纪 80 年代发明了这种冰川,而美国地质调查局于 1986 年 11 月获得了 Malasptna 冰川的数字侧视机载雷达 (SLAR) 数据(图 ZJ),从而促成了本研究。调查有两个主题:(1) 使用雷达遥感提供有关 Malaspina 冰川下基岩特征以及基岩与冰川表面特征关系的信息,以及 (2) 使用雷达提供有关冰川历史的信息。续第 3 页图 1。地图显示了 Wrangeli-Sr. Elias Natronai 公园和保护区内 Maiaspjna 冰川的位置
在回复Rajya Sabha的(e)的部分(a)中提到的陈述。195在08.08.2024的答复有关“气候变化的影响”的答复,Shri Sant Balbir Singh是Rajya Sabha(a)&(b)气候变化的Hon'ble成员,是一种复杂而多方面的全球现象,这是所有国家的协调行动。印度通过其第三次全国性传播已提交了2023年的《联合国气候变化框架公约》(UNFCCC),即我们国家经历了从洪水和干旱到热浪和冰川融化的全部气候变化影响。在部门,生物多样性和森林中观察到气候变化的影响;农业;水资源;沿海和海洋生态系统;人类健康;性别;城市和基础设施;以及经济成本。气候变化可能会增强冰川的撤退,这可能会进一步增加冰川湖的数量并扩大现有湖泊的大小。印度喜马拉雅地区(IHR)高度容易出现地震,使冰川湖容易受到破坏,在附近社区释放突然的突然,潜在的灾难性洪水。研究表明,冰川熔体最初通过增加水流,从而使农业和水力发电会影响河流系统。然而,随着冰川继续缩小,长期的水量可能会下降,可能会导致缺水,尤其是在干旱季节。(c)&(d)印度政府致力于保护冰川,并通过通过其各部委,部门和机构采取的多种措施来努力减少气候变化的影响。几个印度学院/大学/组织正在定期监测冰川动态,雪和冰川融化。对不同地区印度喜马拉雅地区冰川气候相互作用的长期测量是由其中一些机构进行的。Jal Shakti部,水资源河开发与恒河恢复部(Dowr,RD&GR)已在Roorkee国家水文学研究所(NIH)构成了“监测冰川监测”的指导委员会。该部门还建立了NIH的Cryosphere和气候变化研究中心,以促进印度雪和冰川的有效管理。此外,每年的6月至10月,中央水委员会(CWC)监视印度河流域喜马拉雅河地区的902冰川湖泊和水体(GLS&WBS),并报告了每年的6月至10月,并报告了包括国家灾难管理局(NDMA)和国家灾难管理机构(国家灾难管理机构(SDMA)(SDMA)的各种利益相关者的水相对变化。是地球科学部的自治研究所国家极地和海洋研究中心(NCPOR),在喜马al尔邦,在钱德拉盆地的六个冰川监视六个冰川,以了解冰川对气候变化及其对下游水文学的影响的差异反应。自2016年以来,在钱德拉盆地建立的最先进的现场研究站“ Himansh”正在运营,用于进行现场实验和探险冰川。矿业部下的印度地质调查(GSI)对90个冰川进行了质量平衡研究,并对90个冰川进行了世俗运动研究,以获取冰川的衰退和进步模式。
迈阿斯皮纳冰川是兰格尔-圣伊莱亚斯国家公园和保护区内最大的冰川(图 1)。该冰川面积超过 2,650 平方公里,被复杂的褶皱冰碛系统覆盖,这是由于迈阿斯皮纳支流之间的流入速率和体积差异造成的。在其下游,冰川形成了一个宽阔的球状、缓坡的山麓叶。该叶面积超过 1,500 平方公里,是美国地质调查局 (USGS) 正在进行调查的地点,调查结合了实地观察和测量以及数字遥感数据的实验室分析。尽管美国地质调查局自 19 世纪 80 年代 1C Russell 以来就一直积极调查马拉斯皮纳冰川及其周边地区,但直到 1986 年 11 月,美国地质调查局才获得了马拉斯皮纳冰川的数字侧视机载雷达 (SLAR) 数据(图 ZJ),从而促成了本研究。调查有两个主题:(1)使用雷达遥感提供有关马拉斯皮纳冰川底层基岩特征以及基岩与冰川表面特征关系的信息,以及(2)使用雷达提供有关冰川历史的信息。续第 3 页图 1. 地图显示 Wrangeli-Sr. Elias Natronai 公园和保护区内 Maiaspjna 冰川的位置
Alpine River Biotiverity在冰川撤退中受到快速变暖驱动的冰川撤退的威胁,但是我们预测专业冷水物种的未来分布的能力目前有23个限制。在这里,我们将未来的冰川预测,水文路由方法和物种24分布模型联系起来,以量化冰川对整个欧洲阿尔卑斯山的15 25阿尔卑斯河无脊椎动物物种的人口分布的变化,从2020年到2100年。冰川26对河流的影响预计将稳步下降,河网的河流以每十年1%的速度扩展为27个海拔。物种预计将经历上游分布的变化28,其中冰川持续存在,但在功能上灭绝了冰川完全消失。预计有几个29个高山集水区为冷水专家提供气候避难。但是,当今的30个受保护区网络提供了对这些未来避难所的相对较差的覆盖范围,31表明高山保护策略必须改变以适应32个全球变暖的未来影响。33
摘要。冰川终止以气候系统不同组成部分的重组为特征。特别是,快速的冰盖瓦解会导致误解的反馈回路,这些反馈循环仍然很少了解。为了进一步研究这一方面,我们在这里使用了完全构成的北半球冰盖模型,以形成最后两个冰川终止的数值实验。我们表明,即使这两个终止的一阶气候轨迹相似,太阳日光差的差异也会导致冰原 - 气候系统的重要变化。在倒数第二次终止期间温度较高,与全新世的最后一次冰河间期间的海平面兼容。我们将最后一次对海平面上升约2 m的海平面上升的冰川绿地贡献。我们还模拟了南大洋的温暖地下,与南极冰盖的副作用兼容。,即使没有考虑冰盖融化而导致的海洋淡水浮游,这两个终止却散发出不同的大西洋推翻循环敏感性,这种循环在五次终止期间更容易占用。最后,在额外的灵敏度实验中,我们表明,对于这两个终止,即使还需要考虑植被变化以模拟整个脱胶裂解,北半球的灭绝也是冰盖重新治疗的主要驱动力。相反,即使它影响温度,温室气体的浓度也单独变化也不能解释冰盖撤退的幅度,而只能调节其时间安排。
世界人口的16%以上依赖冰川和融雪作为水的来源(Barnett等,2005)。在热带和亚热带干旱和半干旱地区,人类使用的淡水中有80%来自山脉(Messerli,2001; Vuille等,2008)。Cauvy-Fraunié和Dangles(2019)将冰川覆盖率和熔融率(除其他因素)确定为可以调节分类单元敏感性的关键变量。温度和沉淀(PR)变化预计会对冰圈过程产生相当大的影响(Beniston等,2018)。此外,大气温室气体浓度的增加也会导致气候变化的变化(Boer等,2000)。到目前为止仍然鲜为人知的一个主题是这些气候过程在冰川化的地区如何运作,在冰川地区,原位详细的测量通常很少或不存在。
重建更新世的冰川时间和程度对于理解古气候至关重要。虽然已在北美山脉的西部进行了广泛的研究,但晚更新世的冰川山脉,但科罗拉多州西部麋鹿范围的冰川历史仍在研究中,尤其是在东河水域(East River Watershed),这是一个强烈的科学焦点。在这里,我们使用宇宙基因核素暴露和深度 - 轮廓约会方法来确定东河流域冰川的时机。我们使用冰川建模来重建古射液仪,并量化过去的气候条件。我们的发现表明,东河冰川从其最大位置撤退了约17-18 ka,转移到13至15 ka之间的衰老位置,然后经历了更大的静修至13 ka左右的高海拔。冰川建模表明,与现代条件相比,与现代条件相比,温度降低约为17-18 ka的最大冰扩展可能是维持的。此外,温度降低约为-4.0°C的温度降低可能支持13-15 ka的冰位。这些结果提供了有关东河分水岭和更广阔的西麋鹿范围以及晚期更新世期间更广阔的西麋鹿范围以及古气候条件的见解,这可能有助于对东河流域关键区域进化的未来研究。