摘要 - Spike Corting是从细胞外记录中解码大规模神经活动的关键过程。神经探针的进步有助于记录大量神经元,并增加了通道计数的增加,从而导致较高的数据量并挑战了当前的On-Chip Spike Sorters。本文介绍了L-Sort,这是一种新颖的芯片尖峰分类解决方案,其中中位数尖峰检测和基于本地化的聚类。通过组合中位数近似值和提出的增量中值计算方案,我们的检测模块可实现记忆消耗的减少。此外,基于定位的聚类利用几何特征而不是形态特征,从而消除了在特征提取过程中包含尖峰波形的内存耗费缓冲区。使用Neuropixels数据集进行评估表明,L-SORT可以通过减少硬件资源消耗来实现竞争性排序精度。对FPGA和ASIC(180 nm技术)的实现,与最先进的设计相比,面积和功率效率显着提高,同时保持了可比的精度。,如果与使用相同数据集评估的最新设计相比,我们的设计将大约×10面积和功率效率达到相似的精度。因此,L-SORT是可植入设备中实时高通道计数神经处理的有前途的解决方案。
脑机接口正在利用细胞外记录中的神经尖峰波形或尖峰时间实现重要的新功能 [1],[2]。尖峰检测是从记录中提取神经尖峰的重要步骤。它不仅可以提取用于神经活动解码的信息,还可以将数据带宽减少数百甚至数千倍,从而实现无线传输并实现完全植入神经接口而无需经皮导线突破皮肤。尖峰检测性能对于保存神经信息和避免解码精度下降至关重要。阈值是尖峰检测的最常用方法,超过阈值的值被视为尖峰。面对不断变化的大脑环境,自适应且稳健的阈值至关重要。文献中提出了许多用于定义阈值的算法。一种方法是使用计算算法 [3],[4],例如短时傅立叶变换、小波变换和模板匹配。还有一些算法方法,例如反馈控制阈值 [5]。最常见的方法是根据信号统计数据设置阈值。噪声统计数据被广泛用于设置阈值。还提出了一种硬件高效估计方法,使用乘数将平均值/中位数/标准差/均方根值设置为阈值 [6]。其他人选择使用稳健统计估计来设置阈值 [7]。将阈值设置为 T = αN ,其中 N 是噪声统计数据,α 是用户定义的参数,这是设置阈值的常用方法 [8]。由于其简单性,这种方法在植入体实施中尤其受欢迎 [9]。然而,这种算法的自适应性