确定飞行包线极限所需的测试,该极限是风速和风向的函数。舰载飞行操作必须应对海洋环境特有的挑战,例如船舶运动和船舶上层建筑产生的尾流湍流。船舶尾流影响飞机性能和操纵品质特征,进而影响飞行员的工作量。船舶尾流特征因船舶而异,甚至同一艘船的不同相对风角也不同。在模拟环境中评估船舶尾流严重程度的能力使得在设计过程中解决与尾流相关的设计考虑因素,例如船舶几何布局和飞机飞行控制设计。NAVAIR 开发了一种桌面尾流分析工具,用于模拟飞机在受到计算流体力学 (CFD) 创建的精确船舶尾流速度时操纵特性。该工具已应用于多种船舶配置,以评估尾流对旋翼和固定翼飞机的影响。这项工作描述了构成尾流评估工具的实时飞机飞行动力学模型和 CFD 尾流模型,总结了验证和确认工作,并描述了用于评估船舶尾流严重程度的比较过程(针对示例船舶配置)。
摘要。由于全球海上风电装机容量快速增长,单个风电场的规模也在不断扩大。这对预测能源产量的模型提出了挑战。例如,当前一代尾流模型大多是在现有规模小得多的风电场上校准的。这项工作利用大气大涡模拟分析了未来多千兆瓦风电场的年能源产量和尾流损失。为此,针对一系列假设的 4 GW 海上风电场场景模拟了 1 年的实际天气。这些场景在应用的涡轮机类型、安装容量密度和布局方面有所不同。结果表明,当单个涡轮机的额定功率较大时,在总安装容量保持不变的情况下,生产数量会显著增加。即使对于额定功率相似但功率曲线略有不同的涡轮机类型,也发现生产存在显著差异。虽然风速被确定为决定气动损失的最主要因素,但已确定大气稳定性和边界层高度的明显影响。通过分析第一排涡轮机的损耗,全球年平均阻塞效应估计在 2% 到 3% 之间,但在稳定分层条件和风速约为 8 ms − 1 时,阻塞效应可达到 10% 以上。本研究使用高保真建模技术,深入了解未来多千兆瓦风电场在全年真实天气条件下的性能。
摘要 本文全面回顾了风电场布局和风电场综合电力系统的可靠性评估。作者回顾了可再生能源的普及,这增加了电力系统的不确定性。当考虑孤立微电网时,风速和尾流效应等不确定性是需要处理的重点。当风电场与主电网整合时,情况就变得十分严峻。由于存在不确定性,研究风电场综合电力系统的可靠性评估对于有效分析电力系统行为将变得十分重要。因此,本文讨论了考虑不确定性参数(主要是尾流效应)的风力涡轮机布局优化方法。在这方面,本文详细回顾了基于单目标和多目标函数的不同尾流模型和优化方法,并进行了适当的比较。本文更好地说明了这些优化方法在风电场最佳风力涡轮机位置方面的有效性。此外,本文还拓展了对风电集成电力系统的可靠性和成本评估以及可靠性改进技术的看法。本文提供了全面的信息,为研究人员设计风电场布局和评估风电集成电力系统的可靠性提供了一个有吸引力的后续研究工具。
摘要。尾流效应是风电场设计和分析中的一个关键挑战。对于浮动风电场,平台在涡轮机的气动载荷下发生偏移,并受到系泊系统的约束,系泊系统的允许偏移量可能有很大变化。当考虑尾流转向时,涡轮机的侧风偏移可以抵消尾流的横向偏转。这项工作提出了一种工具,可以有效地模拟浮动风电场尾流转向和平台偏移的耦合影响。该工具依赖于频域风电场模型 RAFT 和稳态尾流模型 FLORIS。使用 FAST.Farm 进行了验证,然后将该工具应用于一个简单的双涡轮机案例研究。在比较对涡轮机功率的影响时,考虑了一系列具有增加的平台偏移和不同偏航错位角的系泊系统。探讨了对涡轮机间距和系泊系统方向的其他敏感性。结果表明,顺风涡轮机发电存在一个最不理想的观察圈宽度,该宽度随偏航错位角和涡轮机间距而变化。此外,偏航失准条件下的涡轮机偏移量会因系泊系统相对于转子平面的方向而发生显著变化,进而影响最佳失准角。这些结果凸显了在评估浮动风力发电机组的尾流转向策略时考虑浮动平台偏移量和系泊系统的重要性。