通过揭示不同电路深度各个子区域的纠缠熵和互信息的时空共形协方差,我们建立了 (1 + 1) 维混合量子电路中共形场论 (CFT) 在测量驱动纠缠转变时的出现。虽然演化是实时发生的,但电路的时空流形似乎承载着具有虚时间的欧几里得场论。在整篇论文中,我们通过在空间和/或时间边界注入物理量子位来研究具有几种不同边界条件的 Clifford 电路,所有这些都给出了底层“Clifford CFT”的一致特征。我们强调 (超) 通用结果,这些结果仅仅是共形不变性的结果,并不关键地依赖于 CFT 的精确性质。其中包括由于测量引起的量子非局域性而导致的无限纠缠速度和混合初始状态的临界净化动力学。
无纠缠非局域性 (NLWE) 是多部分可分离状态的量子态鉴别中发生的一种非局域现象。在正交可分离状态的鉴别中,当无法通过局部操作和经典通信完美区分量子态时,使用术语 NLWE。在这种情况下,NLWE 的发生与正在制备的量子态的非零先验概率无关。最近发现,在非正交可分离状态的最小误差鉴别中,NLWE 的发生可能取决于非零先验概率。在这里,我们表明,即使在最佳无歧义鉴别中,NLWE 的发生也可能取决于非零先验概率。我们进一步表明,即使只有一个状态可以无误差地进行局部鉴别,NLWE 也可以与非零先验概率无关地发生。我们的结果为根据量子态鉴别对多部分量子态集进行分类提供了新的见解。
在量子计算机上模拟费米子系统的能力有望彻底改变化学工程、材料设计、核物理等领域。因此,优化模拟电路对于充分利用量子计算机的功能具有重要意义。在这里,我们从两个方面解决这个问题。在容错机制下,我们优化了 rz 和 t 门数以及所需的辅助量子比特数,假设使用乘积公式算法进行实现。与现有技术相比,我们获得了门数节省率为 2 和所需辅助量子比特数节省率为 11。在预容错机制下,我们优化了两量子比特门数,假设使用变分量子特征求解器 (VQE) 方法。具体到后者,我们提出了一个框架,可以使 VQE 进程向费米子系统基态能量收敛的方向引导。该框架基于微扰理论,能够将 VQE 进程每个循环的能量估计值提高约三倍,与试验台上经典可访问的水分子系统中的标准 VQE 方法相比,更接近已知基态能量。改进的能量估计反过来又会节省相应数量的量子资源,例如量子比特和量子门的数量,这些资源需要在已知基态能量的预定公差范围内。我们还探索了一套从费米子到量子比特算子的广义变换,并表明在小规模情况下,资源需求节省高达 20% 以上是可能的。
量子力学最引人注目的特性之一是,量子系统的状态可以表示为不同物理态的相干叠加,即与某些可观测量的实际可测值相对应的特征态。由于这些特征态构成了完全可区分状态的基础,因此这种线性展开的系数也取决于基础。所有纯量子特性都与量子相干性的存在密切相关,量子相干性在实验中表现为干涉和量子涨落 [1]。人们确实认为从经典世界到量子世界的转变是由于退相干 [2]。保持量子相干并从而对抗退相干是量子信息处理协议 [6] 面临的最基本挑战之一 [3–5]。
摘要 本文设计了一种用于无线局域网 (WLAN) 应用的 Koch 分形天线。Koch 雪花设计具有对称和自相似结构,可实现空间填充能力并改善天线的表面电流。整体分形天线结构由安装在介电材料(阻燃剂-4 (FR-4),介电常数r=4.4,损耗角正切δ=0.02)两侧的铜箔(贴片和接地平面)组成。天线采用微带线馈电。Koch 分形天线的尺寸为 30 30 1.6mm3,是在高频结构模拟器 (HFSS) 平台上实现的紧凑尺寸设计。使用迭代函数系统 (IFS) 将模拟输出与贴片上实现的不同迭代进行内部比较,并比较三种不同迭代的辐射频率、回波损耗、带宽、增益和方向性的差异。三次迭代的谐振频率范围从 5.8GHz 到 7.47GHz,可用于 WLAN 应用。因此,所提出的 Koch 雪花分形天线设计随着迭代规模的增加而改善了天线参数,例如 S 11 从 -21.35dB 到 -36.32dB,平均增益为 3dB,阻抗带宽为 25.90%。关键词:天线设计、FR-4、接地平面、Koch 雪花、贴片、WLAN 应用
摘要 拓扑量子纠错码已成为实现大规模容错量子计算机目标的主要候选者。然而,在存在噪声的情况下量化这些大尺寸系统中的纠缠是一项艰巨的任务。在本文中,我们提供了两种不同的方法,以可定位的量子比特子集纠缠来表征噪声稳定器状态,包括表面和颜色代码。在一种方法中,我们利用适当构造的纠缠见证算子来估计基于见证的可定位纠缠下限,这可以在实验中直接获得。在另一种方法中,我们使用与稳定器状态局部幺正等价的图状态来确定可计算的基于测量的可定位纠缠下限。如果在实验中使用,这将转化为从特定基中的单量子比特测量中获得的可定位纠缠下限,这些测量将在感兴趣的子系统之外的量子比特上执行。为了计算这些下限,我们详细讨论了从稳定器状态获取局部幺正等效图状态的方法,其中包括一种新的可扩展几何方法以及一种适用于任意大小的一般稳定器状态的代数方法。此外,作为后一种方法的关键步骤,我们开发了一种可扩展的图形转换算法,该算法使用一系列局部互补操作在图中的两个特定节点之间创建链接。我们为这些转换开发了开源 Python 包,并通过将其应用于嘈杂的拓扑颜色代码来说明该方法,并研究可局部纠缠的见证和基于测量的下限如何随所选量子比特之间的距离而变化。
能够远距离分布纠缠的卫星的发射和第一次无漏洞违反贝尔不等式是里程碑,为建立量子网络指明了一条清晰的道路。然而,具有独立纠缠源的网络中的非局域性仅在简单的三部分网络中通过违反双局域性不等式得到实验验证。在这里,通过使用可扩展的光子平台,我们实现了由最多五个远距离节点和四个独立纠缠源组成的星型量子网络。我们利用这个平台来违反链式 n 局域性不等式,从而以与设备无关的方式见证了实施网络节点之间非局域相关性的出现。这些结果为相关领域的量子信息处理应用开辟了新的视角,其中观察到的相关性与标准局部隐变量模型兼容,但如果考虑到源的独立性,则是非经典的。
• 为 802.11、e、k、r、u、v、w、ac 等主要标准的制定做出了贡献(100 多项专利) • 开发了业界首个无线局域网控制器和 RRM(无线资源管理)功能 • 部分开发团队参与了无线局域网行业使用的 70% 的代码
摘要 我们分析了量子纠缠和经典纠缠之间的相互关系。后者的概念广泛应用于经典光学模拟光的某些量子状特征。我们批评了“量子非局域性”是区分量子和经典纠缠实现的基本因素的普遍解释。相反,我们指出了 Grangier 等人于 1986 年进行的突破性巧合检测实验,该实验在拒绝(半)经典场模型而支持量子力学方面发挥了关键作用。经典纠缠源产生二阶相干系数为 g ( 2 ) ( 0 ) ≥ 1 的光束。使用不同通道中的信号强度而不是计数光电探测器的点击次数可以掩盖经典纠缠的这一特征。强度和点击次数计数之间的相互作用不仅仅是一个技术细节。我们将这个问题提升到了很高的基础层面。