摘要:从全球来看,癌症治疗仍是一个主要问题。随着纳米技术的最新发展,基于层状双氢氧化物 (LDH) 的纳米系统因其 pH 依赖性生物降解性、优异的生物相容性、易于表面改性、阴离子交换容量和高化学稳定性而受到特别关注,为癌症治疗带来了巨大的潜力。通过将无机、有机或生物分子插入其层状晶格中,可以从层状双氢氧化物 (LDH) 开发出具有双重或多功能特征(包括抗癌能力)的新型混合材料。尽管已经发表了出色的研究,但很少有综述论文讨论这些重要且有希望的发现,以刺激基于 LDH 的纳米系统在癌症治疗领域的持续发展。因此,本文研究重点关注基于 LDH 的化疗纳米系统在癌症治疗方面的最新进展。本综述中使用的信息来自之前发表的研究,并从多个期刊渠道检索而来。这些报告讨论了基于层状双氢氧化物的化疗纳米系统在癌症治疗中的应用。研究表明,层状双氢氧化物可用于开发单一或复合纳米系统,以精确分配治疗成分,而不会对纳米医学领域造成累积损害。 DOI:https://dx.doi.org/10.4314/jasem.v27i4.24 开放获取政策:JASEM 发表的所有文章均为 AJOL 支持的 PKP 下的开放获取文章。文章发表后立即在全球范围内提供。无需特殊许可即可重新使用 JASEM 发表的文章的全部或部分内容,包括图版、图表和表格。版权政策:© 2022 作者。本文是根据知识共享署名 4.0 国际 (CC-BY-4.0) 许可条款和条件分发的开放获取文章。只要明确引用原始文章,即可在未经许可的情况下重新使用文章的任何部分。引用本文为:OMONMHENLE,S. I;IFIJEN,IH (2023)。基于层状双氢氧化物的化疗纳米系统在癌症治疗中的进展。应用科学杂志。环境。管理。27 (4) 815-821 日期:收到日期:2023 年 2 月 7 日;修订日期:2023 年 3 月 18 日;接受日期:2023 年 3 月 28 日出版日期:2023 年 3 月 31 日关键词:层状双氢氧化物;纳米系统;癌症治疗;耐药性由于定制或靶向治疗等替代疗法的出现,癌症的治疗方法已经发展(Maliki 等人,2022 年;Ifijen 等人,2022 年),但它们仍然有很多缺点。光疗法(Ifijen et al., 2023a; Ifijen et al., 2023b)由于其高度选择性,是最有前景的治疗方法之一,可相对容易地用于治疗甚至深层癌症,例如肝肿瘤。光疗中使用的两种主要治疗方法是光热疗法 (PTT) (Zhong et al ., 2021) 和光动力疗法 (PDT) (Perni et al ., 2021),后者利用光产生治疗性活性氧 (ROS) (Algorri et al ., 2021)。这些治疗方法通常用于增加总
1 劳伦斯伯克利国家实验室生物系统与工程部,加利福尼亚州伯克利 94720,2 加利福尼亚大学伯克利分校物理系,加利福尼亚州伯克利 94720,3 艾伦脑科学研究所,华盛顿州西雅图 98109,4 加利福尼亚大学伯克利分校/旧金山分校神经工程与假肢中心,加利福尼亚州伯克利 94720-3370,5 加利福尼亚大学伯克利分校电气工程与计算机科学系,加利福尼亚州伯克利 94720,6 加利福尼亚大学伯克利分校海伦威尔斯神经科学研究所和雷德伍德理论神经科学中心,加利福尼亚州伯克利 94720,7 劳伦斯伯克利国家实验室科学数据部,加利福尼亚州伯克利 94720,以及 8 劳伦斯伯克利国家实验室生物系统与工程部,加利福尼亚州伯克利 94720
摘要 通过恒电流间歇滴定技术在 3 至 4.2 V 电压范围内测定了 LiNi 1/3 Mn 1/3 Co 1/3 O 2 中的化学扩散系数。在充电和放电过程中,这些层状氧化物正极中的计算扩散系数分别在开路电压 3.8 V 和 3.7 V vs. Li/Li + 时达到最小。观察到的化学扩散系数的最小值表明在此电压范围内发生了相变。使用非原位晶体学分析确定了不同锂化状态下 LiNi 1/3 Mn 1/3 Co 1/3 O 2 正极的晶胞参数。结果表明,晶胞参数变化与 NMC 正极中化学扩散的观测值相关性很好;在同一电压范围内,绝对值有显著变化。我们将观察到的晶胞参数变化与镍转化为三价状态(具有 Jahn-Teller 活性)以及锂离子和空位的重新排列联系起来。
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。
简述:Baratham 等人研究了感觉诱发的 ECoG 反应的定位和起源。他们通过实验发现,ECoG 反应各向异性地定位在 £ ±200 μm 范围内,即单个皮质柱。生物物理详细模拟表明,与通常的想法相反,V 层和 VI 层的神经元是诱发的 ECoG 反应的主要来源。
其中,S 为塞贝克系数,σ 为电导率,κ 为热导率,T 为绝对温度。ZT 用于比较热导率不同材料的热电性能。而功率因数(PF = S2σ)则比较热导率相近材料的热电效率。[1–7] 目前,Bi 2 Te 3 、PbTe 和 SiGe 等无机化合物占据热电市场主导地位。[8–12] 然而,这些化合物的使用存在若干缺点,例如毒性、原材料稀缺、成本高和不可持续。因此,人们对寻找可替代的可持续、高度丰富、低成本和无毒的材料有着浓厚的兴趣。有机半导体(例如:导电聚合物、碳质材料和纳米复合材料)由于其优越的性能(例如可用性、低热导率、易于化学改性和大规模生产)而提供了一种新兴的替代方案。通过掺杂 PEDOT 来提高导电聚合物的热电性能,可使 ZT 值达到 0.2–0.4。[13] 碳纳米结构,特别是碳纳米管 (CNT) 在通过以下方法制备的多层系统中表现出优异的热电行为
用于汽车和航空航天工程中使用的食品,药品和电子包装以及金属聚合物接头,在界面上的水分吸附在长期的关节性能中起着重要作用。[3,4]这是因为固定的层状结构有助于显着降低小分子的扩散速率,例如氧气和水分,由于其独特的结构,具有紧密堆积的聚合物链,并具有垂直于底物的紧密堆积的聚合物链。目前将固定层状结构结构的形成理解为受到封闭的结晶的结果。[5]已经报道了两种类型的封闭结晶。在发生微相聚合物或聚合物混合物中发生微相聚合物时发现了第一种类型。当每个组分的结晶温度(T C)不同时,具有较高T C的组分首先结晶并形成其他聚合物的纳米或微观限制。因此,较低T C的分量在限制下结晶。[6]在超薄膜中发现了第二种粘附的结晶,来自稀聚合物溶液或聚合物熔体。[7]在各种晶体聚体中发现了这种层状晶体结构,例如聚(乙烯基氟化物),聚乙烷氧化物),聚(3-羟基丁酸)和聚(L-乳酸)。在我们的上一篇论文中,关于聚合物间相结构对半石化热塑性和金属之间粘附的影响,我们表明可以在聚合物 - 金属中的相互之间找到层状结构。[8]尽管形成这些层状Crys-talline结构的CRYS级数机制,例如,关于生长取向的结构,仍然不太了解,但纳米级限制(含量很少的纳米量)被认为是这些层状结构结构的关键。[9]层状结构的形成对金属心皮界面的断裂行为有重大影响,这在例如从模具表面释放热塑性塑料至关重要。这些结果表明,层状结构可能形成,而无需上述纳米级。在本文中,进一步研究了聚合物中的层状结构,以进行各种半晶体热塑料和不同的底物材料。还使用硅
1. 厦门大学医学院肿瘤研究中心,厦门 361102。2. 香港中文大学理工学院,深圳市创新药物合成重点实验室,深圳 518172。3. 杜克大学 Thomas Lord 机械工程与材料科学系,北卡罗来纳州达勒姆 27708,美国。4. 广东药科大学第一附属医院,广州 510026。5. 加利福尼亚大学环境毒理学系,加利福尼亚州河滨市 92507,美国。6. 福建医科大学基础医学院免疫治疗研究所,福州 350122。7. 厦门大学医学中心附属翔安医院消化内科、妇产科,厦门 361000。 8. 山东第一医科大学附属省立医院麻醉科,山东济南 250021。
LDHs作为一种具有特殊层状结构的无机功能纳米材料,具有价格低廉、生物相容性好、热稳定性好、比表面积大、内部结构可调、可替换插层阴离子、高的阴离子交换容量等特点。[5]因此,LDHs在催化、[6]吸附分离、[7]药物控制释放、[8]阻燃[9]和聚合物改性[10]等领域得到了广泛的研究和应用。LDHs最吸引人且最重要的特性是其层间阴离子是可交换的,即各种有机阴离子、无机阴离子、聚合阴离子和药物分子可以插层到LDHs的层间以赋予不同的功能。[11]基于LDHs可替换插层阴离子的特点,近年来LDHs应用最广泛的两个领域是药物载体[2]和污水处理。 [12] 作为药物递送载体,可以将药物分子插入到LDHs中,增强其溶解性、扩散性能、热稳定性,实现可控的释放速率,且不会对人体产生不良影响。[13] 同时,由于LDHs具有环境友好性和独特的阴离子交换性,作为去除废水中污染物的吸附剂也被广泛研究。[14]
消除正极材料中关键金属的使用可加速全球可充电锂离子电池的普及。有机正极材料完全来自地球上丰富的元素,原则上是理想的替代品,但由于导电性差、实际存储容量低或循环性差,尚未对无机正极构成挑战。在这里,我们描述了一种层状有机电极材料,其高电导率、高存储容量和完全不溶性使锂离子可以可逆地嵌入,使其能够在电极层面上在所有相关指标上与无机基锂离子电池正极竞争。我们优化的正极可存储 306 mAh g –1 正极,能量密度为 765 Wh kg –1 正极,高于大多数钴基正极,并且可以在短短六分钟内完成充放电。这些结果证明了可持续有机电极材料在实际电池中的操作竞争力。