(wt。%)[Guéguen2011] [9] tife 0.90 2.981(9)94.8 2.1 [Challet2005] [10] tife 0.85 Mn 0.05 Mn 0.05 2.985 97 Cu0 tife 0.88 MN 0.88 MN 0.02 2.985(8) 95.0.0±0.5 2.6±0.5 2.3±0.5.3±0.5 c2 tife 0.86 mn 0.88(2)94.9±0.5 1.5 1.5±0.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 C4 tife 0.84 Mn 0.84 Mn 0.0.0.0.02 0.9991(6) 86.5±0.7 11.0±0.5 2.5±0.5 <5
TiAl金属间化合物可通过形变诱导相变显著提高材料性能,但对TiAl金属间化合物塑性变形机制尚缺乏足够的认识。本文以双晶结构TiAl合金中的γ − TiAl和α 2 − Ti 3 Al为对象,在纳米尺度上研究了TiAl金属间化合物的位错滑移和孪生变形机制。利用应用扫描电子显微镜(SEM)和电子背散射衍射对变形内部组织进行表征和分析,采用Schmidt因子µ分析技术计算滑移能垒,研究了临界剪应力下γ − TiAl和α 2 − Ti 3 Al相的孪生变形机制以及γ − TiAl和α 2 − Ti 3 Al相的位错滑移动力学。两种双晶结构 γ − TiAl 和 α 2 − Ti 3 Al 的 TiAl 金属间化合物所需的临界剪应力分别为 92 和 108 MPa,孪生萌生时锥形 < a > 和基底 < a > 滑移所需的临界剪应力次之。孪生萌生时锥形 < c + a > 滑移所需的临界剪应力最高,且两者在数值上相等
尽管天堂鸟在形态、行为和求偶策略上存在很大差异,但它们偶尔也会杂交,甚至跨属杂交。许多这样的天堂鸟杂交种最初是根据与已知物种相比的巨大形态差异而被描述为不同物种的。如今,这些标本一般根据形态评估而被认定为杂交种。几个世纪以来,天堂鸟的杂交标本一直让博物学家着迷,它们被收集起来并保存在自然历史收藏中。在本研究中,我们在博物馆组学框架中利用这一宝贵资源,评估了大多数已描述的属间杂交种和一些属内杂交种的基因组组成。我们发现,大多数被研究的标本是第一代杂交种,而且在大多数情况下,亲本种类与之前的形态学评估相符。我们还发现了两个由不同属间基因渗入杂交产生的标本。此外,两个标本表现出杂交形态,但没有可识别的杂交信号,这可能表明少量的基因渗入可能产生很大的形态效应。我们的研究结果为自然界中天堂鸟属间同时发生的基因渗入杂交提供了直接证据,尽管它们的形态和求偶场交配行为存在显著差异。
使用ARC熔化方法合成多晶Zr 5 Al 4。粉末X射线衍射证实了具有晶格参数的Ti 5 Ga 4型(P6 3 /MCM)的先前报道的晶体结构:A = 8.4312(6)Å,C = 5.7752(8)Å。电阻率和低温磁化率研究表明,Zr 5 Al 4在2 K以下表现出超导行为。归一化的热容量在t c = 1.82 K,ΔC/γtc = 1.41时,证实了散装超导性。Sommerfeld系数γ= 29.4 MJ mol -1 K -2和Debye温度d = 347 K,通过拟合低温热容量数据获得。电子偶联强度λEL-PH = 0.48,并且估计的上部临界场μ0H C2(0)= 1.09 t(脏极限)表明Zr 5 Al 4是弱耦合的II型超导体。第一原理计算显示费米能量附近的Van Hove奇异性存在。
化学系 - Ångstr的实验室,乌普萨拉大学,邮箱538,751 21 21 Uppsala,瑞典B材料与环境化学系,斯德哥尔摩大学材料与环境化学系,Svante Arrhenius诉AG 16C 16C,10691 10691,10691,斯沃尔姆,斯沃尔姆,斯沃尔姆,Sweden c c c c c c c,sweden c c c c。 D Univ Paris Est Creteteril,CNRS,ICMPE,UMR7182,2 Rue Henri Dunant,94320 Thiais,法国E CNRS-Saint-Saint-Gobain-Nims,IRL 3629,实验室,用于创新的关键材料和结构的实验室(链接)技术,10691 Stockholm,瑞典G乌克兰NAS和乌克兰MES的磁性研究所,03142 Kyiv,Kyiv,乌克兰H AGH KRAKOW大学物理学和应用计算机科学学院,Mickiewicza,30 - 059 - 059 Krakow,Poland
在线工具有意义的活动,并表示希望拥有在线和面对面选项的愿望。一些参与者描述了在限制期间参加各种在线社交团体活动的参与,例如参加“通过Zoom参加Zumba课程”(P6)。随着限制的逐渐缓解,其中一些活动仍在网上继续进行。p14说:“我们曾经每月进行一次讲座,他们再也没有回到面对面。从那以后一直在线。”许多参与者享受这些在线机会提供的便利,尤其是在特殊情况下正如P4所说:“下雨或10度时,我不可能在公园里做瑜伽”。P5说:“这对人有帮助
本研究报告了对凸块金属化下 Ti/Pt/Au 上放置的铟微凸块/柱内部均匀性的研究。这对于连接电阻率、长期耐用性和后续混合工艺(例如芯片键合)非常重要。金与铟发生反应,形成具有与纯铟不同的化学物理参数的金属间合金。根据透射电子显微镜图像分析了金属间合金的几何和结构参数。使用透射电子显微镜和能量色散谱法确定所研究样品中元素的分布。未退火(A)和退火(B)铟柱中的金属间合金厚度分别为 1.02 μm 和 1.67 μm。两个样品均观察到合金的层状和柱状内部结构,样品 B 中的晶粒大两倍。检测到未退火 In 柱的 Au-In 金属间合金的分级化学成分,而退火样品 B 的恒定成分为 40% Au 和 60% In。原子分布对 In 柱的机械稳定性影响较小。对于厚度为 1.67 μm 的均匀柱状金属间合金结构,直径为 25 µm、高度为 11 µm 的 In 柱的产率可能超过 99%。
摘要:新型太阳能电池技术对温度的敏感性迫使人们使用熔点较低的焊料合金进行互连 [1]。我们的研究探讨了应用于硅异质结 (SHJ) 太阳能电池低温银金属化的 Sn42Bi58 焊点中金属间相生长和显微硬度的动力学。通过严格的实验和分析,我们了解了这些因素对焊点机械和材料性能的影响。通过横截面显微镜研究了与传统锡铅焊料相比,Sn42Bi58 焊料的微观结构变化,揭示了增大的金属间颗粒和相边界生长。这些变化归因于低熔点焊料的较低同源温度,预计会对焊点的机械强度产生负面影响。对于金属间相 Ag 3 Sn 模拟预测 SHJ 模块运行 25 年后潜在层厚度为 20 µm。我们的结果表明,Ag 3 Sn 相对显微硬度有显著影响。经过老化处理后,低温银金属化的纳米硬度增加了一倍,从 660 ± 53 N/mm² 增加到 1367 ± 411 N/mm²。这种硬度的提高主要归因于 Ag 3 Sn 金属间化合物相的主导作用。关键词:无铅焊接、金属间化合物、显微硬度、互连、长期稳定性 1 引言
摘要 - 单层三维集成电路(M3D-IC)中的(MIV)的金属间层中的Miv(MIV)用于连接层间设备,并在多层跨多层提供功率和时钟信号。MIV的大小与逻辑门相当,因为由于顺序集成,底物层的显着降低。尽管MIV的尺寸很小,但MIV对相邻设备性能的影响应考虑在M3D-IC技术中实现IC设计。在这项工作中,我们会系统地研究晶体管在MIV附近放置的晶体管性能变化,以了解MIV通过底物时MIV对相邻设备的影响。仿真结果表明,应考虑使用MIV的保留区(KOZ)以确保M3D-IC技术的可靠性,并且该KOZ高度依赖于M3D-IC过程。在本文中,我们表明,考虑到M1金属螺距的MIV附近的晶体管,因为分离将具有高达68、668×增加泄漏电流,当通道掺杂为10 15 cm - 3,源/排水掺杂,10 18 cm -3
摘要。钛铝化物 (TiAl) 合金是一种金属间化合物,与镍基高温合金相比,它具有低密度、高熔点、良好的抗氧化和耐腐蚀性。因此,这些合金用于航空发动机部件,如涡轮叶片、燃油喷射器、径向扩散器、发散襟翼等。在运行过程中,航空发动机部件在氧化和腐蚀环境中承受高热负荷,导致磨损和其他材料损坏。由于交货时间长且费用高昂,更换整个部件可能并不可取。在这种情况下,维修和翻新可能是回收 TiAl 部件的最佳选择。不幸的是,目前还没有针对 TiAl 基部件的认可修复技术。基于增材制造 (AM) 的定向能量沉积 (DED) 可以作为帮助修复和恢复昂贵航空发动机部件的一种选择。在本文中,回顾了利用 DED 技术局部修复受损的 TiAl 基航空部件的努力。更换整个 TiAl 部件是不可取的,因为这样做成本昂贵。DED 是一种很有前途的技术,用于生产、修复、返工和大修 (MRO) 受损部件。考虑到航空工业的高质量标准,对 DED 修复的 TiAl 部件进行认证以供未来在飞机上使用非常重要。然而,目前尚无关于 TiAl 修复部件认证的标准。案例研究表明,人们正在考虑使用 DED 修复 TiAl 部件。在一台机器上完成加工、修复和精加工功能的混合技术是一种提高修复效率的有吸引力的实施策略。审查表明,对基于 DED 的修复技术的开发和应用的研究有限,这表明非常需要进一步研究。