为了确保未暴露于高于 +40°C的温度下,必须始终伴随疫苗在CTC中监测疫苗的温度暴露时,必须伴随“峰值温度阈值指示器”。此指示器是带有贴纸的卡片,一旦温度暴露超过 +40°C,它将从浅灰色变为黑色。如果发生这种情况,则在对事件进行了适当的调查和文件后,必须将所有疫苗载体中的疫苗丢弃。峰值温度阈值指标不能替换VVM,因为它们测量了峰值暴露,而VVM的累积暴露在热量中。后者不足以监测比CTC标准所接受的高温接触。因此,两个温度监测工具相互互补。
通过热-水-力学 (THM) 耦合数值建模,研究了大型两用罐 (DPC) 中乏核燃料 (SNF) 地质处置的热管理。DPC 是专为 SNF 储存和运输而设计的容器,如果确定可用于永久地质处置,则可以提供具有成本效益的处置解决方案。然而,直接处置 DPC 的挑战之一是热管理,以避免工程屏障系统 (EBS) 过热,包括用作保护性缓冲器的膨润土回填料。模型模拟表明,使用经过热工程设计以实现高导热性的回填料可以将 EBS 温度降低到可接受的水平,以便在回填料隧道中处置大型废料罐。另一方面,使用高导热回填料不会降低处置库关闭几千年后可能出现的远场岩石峰值温度。这种较长期的母岩峰值温度会产生热孔隙弹性应力和地质力学变化,在储存库的热管理和设计中必须考虑到这些变化。
通过热-水-力学 (THM) 耦合数值建模,研究了大型两用罐 (DPC) 中乏核燃料 (SNF) 地质处置的热管理。DPC 是专为 SNF 储存和运输而设计的容器,如果确定其可用于永久地质处置,则可以提供一种具有成本效益的处置解决方案。然而,直接处置 DPC 的挑战之一是热管理,以避免工程屏障系统 (EBS) 过热,包括用作保护性缓冲器的膨润土回填料。模型模拟表明,使用经过热工程设计以实现高导热性的回填料可以将 EBS 温度降低到可接受的水平,以便在回填料隧道中处置大型废料罐。另一方面,使用高导热回填料不会降低处置库关闭几千年后可能出现的远场岩石峰值温度。这种较长期的母岩峰值温度会产生热孔隙弹性应力和地质力学变化,在处置库的热管理和设计中必须考虑到这些变化。
目的:提高太阳能热发电系统的效率和稳定性,促进太阳能热发电并网优化发展。方法:分析储热系统中换热器的工作原理,结合系统工艺要求,采用机理建模法建立换热器的数学模型。根据储热系统的固有特性和控制要求,提出控制方案,设计采用单回路控制、Smith预估补偿控制、串级-Smith控制、前馈-串级-Smith控制等不同控制算法的控制策略。建立仿真模型,得到不同控制系统的阶跃响应波形,全面分析比较不同控制策略的优缺点。结果:引入过热蒸汽质量流量扰动后,单回路控制系统误差增大,调整系统恢复振荡状态后,系统误差较大(10.24%)。 Smith预估补偿控制系统存在波动,峰值时间为548秒,峰值温度为366℃。级联Smith控制系统存在波动,峰值时间为620秒,峰值温度为398℃,最大偏差为31℃。前馈-级联Smith控制系统存在扰动,峰值时间为606秒,最小温度为347℃,最大偏差为4℃。与级联Smith控制系统相比,前馈-级联Smith控制系统的扰动偏差减小了87%。结论:提出的前馈-级联Smith控制系统具有抗干扰能力强、稳定性好、稳态误差小等优点,对聚光太阳能发电技术的发展具有一定的意义。关键词:太阳能,发电,并网,仿真。控制
摘要 。WAAM工艺中的热行为是产生热应力的一个重要原因。本文利用ABAQUS软件建立了四层壁面的三维模型,以研究碳钢(ASTM A36)WAAM壁面的热行为。此外,研究了基材预热温度和行进速度对温度分布的影响。建模结果表明,随着沉积层数的增加,峰值温度升高,但平均冷却速度降低。此外,基材预热会增加第一层的峰值温度并降低其平均冷却速度。从模拟结果来看,行进速度对沉积层的热行为有主要影响。 关键词 。增材制造;电弧增材制造;有限元方法;低碳钢。
摘要:本文重点研究了带有矩形实体翅片的组合式混合微通道散热器的数值优化。轴向长度和体积固定,外部结构可以变化。模拟是在微通道散热器的基本单元上进行的。优化的目的是找到内部和外部配置中的最佳几何排列,以使微通道散热器中的峰值温度最小化。假设微电子电路板设备在单元底壁上散发 250 W/cm 2 的高密度均匀热通量。计算流体动力学代码用于离散化流体域并求解一组控制方程。讨论了水力直径、外部结构形状和流体速度对峰值温度和全局热阻的影响。雷诺数范围为 400 至 500 的冷却剂或水以强制对流层流的形式通过计算域的入口引入,以去除矩形块微通道底部的热量。结果表明,当流体速度在微散热器轴向长度上从 9.8 m/s 增加到 12.3 m/s 时,从组合散热器底部移除的热量更多。结果表明,在带翅片的组合微通道中,泵功率增加了 37.1%,而在无翅片微散热器中增加了 27.2%。研究结果与公开文献中关于具有圆形流道的传统微散热器的记录相符,趋势一致。关键词:微通道结构、配置、组合微通道和微翅片 [2022 年 11 月 14 日收到;2023 年 4 月 4 日修订;2023 年 4 月 14 日接受] 印刷 ISSN:0189-9546 | 在线 ISSN:2437-2110
尽管使用了广泛的应用,但锂离子电池(LIBS)一直在努力,因为它们的安全风险不同。在这里,NCMA袋细胞以三个里程碑阶段的新鲜和老化细胞的安全为例,即触发风险,ISC模式和随后的热失控(TR)后结果的内部短路(ISC)。通过将机械滥用测试和基于物理的基于物理的模型与各种卫生状态(SOH)和充电状态相结合,发现ISC触发延迟的SOH和软ISC模式的衰减将更加频繁地触发,这主要是由于当前收藏家的机械行为。由于容量降低和确定性软ISC工艺,温度上升和随后TR期间的峰值温度也变得温和。的结果在这里提供了对新鲜细胞和老年细胞之间安全风险比较的机械解释,从而为下一代更安全的LIB的评估和设计提供了基石的指导。
超宽的带隙半导体β加氧化物(β -GA 2 O 3)使电子设备的低传导损失和高功率有望。但是,由于β -GA 2 O 3的天然较差的导热率,其功率设备具有严重的自加热效果。为了克服这个问题,我们强调了使用TCAD模拟和实验的设备结构对β -GA -GA 2 O 3 Schottky屏障二极管(SBD)的峰值温度的影响。在TCAD中模拟了SBD拓扑,包括β -GA 2 O 3的晶体取向,Schottky金属,阳极面积和厚度的工作功能,表明β -GA -GA 2 O 3的厚度在降低二极管峰值温度方面起着关键作用。因此,我们制造了具有三个不同厚度外延层和五个不同厚度底物的β -GA 2 O 3 SBD。使用红外热成像摄像头测量二极管的表面温度。实验结果与模拟结果一致。因此,我们的结果为高功率β -GA -GA 2 O 3二极管提供了新的热管理策略。
摘要:由于已知锂离子电池的快速充电方案导致电池容量的减小,因此需要在充电过程中避免锂电池。本文为电池模块设计了阳极潜在的观察者和无电镀充电方案,以避免模块中所有单元的锂镀层的风险。观察者是使用电化学细胞模型和电舱电池模型设计的,以估计平行连接的电池模块中所有细胞的阳极电位。由于其简单性和低计算负载,观察者在电荷管理系统中易于实现。结果表明,设计的观察者和充电方案可以准确估计模块中所有细胞的阳极电位。在无电镀充电方案中使用了观察者的估计结果。与常规充电方法相比,提出的方案增加了一个额外的阶段,以估算和控制阳极电位,从而降低了在充电过程中锂电池的风险。它还将电池的峰值温度降低了约9.8%,并将整体充电时间降低了18%。
利用脉冲激光激发和加工材料已经成为科学和工业领域的多功能工具。例如,脉冲激光加热用于产生冲击波,用于动态压缩研究1-3、光声材料光谱4-6或工业应用,如激光烧蚀7,8、激光切割9,10或激光打标11。在许多其他实验和应用中,激光加热虽然是一种不受欢迎的副作用,但必须加以考虑。当今商用脉冲激光源发出的脉冲持续时间从几飞秒到几百纳秒不等。因此,激光加热的相关时间尺度至少延伸超过五个数量级。除了脉冲持续时间之外,光与物质的相互作用还取决于其他参数,如激光波长λ、激光能量密度和脉冲重复率。通常,这些量的最佳组合是在实证研究中找到的。本文推导出一个参数来描述不透明介质吸收激光脉冲后的热扩散动力学。该参数仅取决于材料常数和激光脉冲持续时间,并允许快速估算样品表面产生的峰值温度。