铅免费焊接和环境合规性:供应链准备和挑战Dongkai Shangguan flextronics摘要供应链准备和兼容性对于平稳过渡到全球电子行业的环境合规性至关重要。本文回顾了无铅销售和ROHS合规性,供应链准备,关键兼容性问题和未来挑战的状态。领先的免费解决方案带有免费的免费焊料合金,现在已经花费了将近15年的时间来开发免费的铅焊料解决方案。自然,努力始于寻找无铅焊料合金。该行业终于融合了SN-AG-CU(SAC)合金;但是,尚不清楚这是否是对单个合金组成的强大收敛,还是具有各种组成和修饰的弱收敛性。如果可以依靠历史在这方面提供任何指导,那么在西方世界中,在远东地区有更多品种的统一性。由于其关键特征的绝对相似性,因此预计SAC周围的这些变化和修改不会需要显着不同的焊接过程和基础设施。知识基础设施该行业在建立知识基础设施方面取得了重大进展,以支持潜在的免费解决方案,包括焊料材料需求,组件要求,PCB(印刷电路板)层压材料和表面表面处理要求,包括SMT(表面上的技术),波浪焊接和重新制作的型板形式和复杂性。in铅免费焊接过程的资格已成为渗透无铅知识和全球工厂能力的有效工具。组件的组件内部材料必须满足ROHS要求。就终止冶金剂而言,对于被动组件,Matte SN Plating已与SN-PB焊料一起使用了很多年,并且也可以与无铅焊料一起使用。对于铅组件,只要可以有效地管理SN Whisker风险,就可以与无铅焊料(“向前兼容”)一起使用Matte SN或SN合金的电镀。ni/pd已与SN-PB焊料一起使用了多年,而Ni/PD/AU目前是铅型组件的替代品,用于铅免费焊接。带有SAC球的区域阵列套件与SAC焊料效果很好。用于回流焊接,假设最低峰值温度为235 o C,最高温度取决于整个电池的温度三角洲,这又取决于板的尺寸,厚度,层计数,布局计数,CU分布,组件尺寸和热质量,烤箱的热质量,烤箱的热容量,以及某些不可循环的过程变异和测量耐受性。大型厚板,带有大型复杂组件(例如CBGA,CCGA等)通常具有高达20-25 o的温度三角洲。返工是另一个有助于组件温度升高的过程。考虑到所有应用要求时,长期以来一直提出了260 o C峰值温度作为铅无铅焊接所需的温度。根据组件的体积和厚度以及过程条件(例如返工),在IPC/JEDEC标准020中捕获了要求(包括焊接峰值温度和公差)。应注意,实际的组件体温可能与板上测得的温度不同,并且不同的组件可能具有不同的温度,具体取决于板上的组件热特性和位置。PCB较高的无铅焊接温度列出了PCB的可靠性问题,例如变色,经线,分层,起泡,垫子提升,CAF,CAF(导电阳极丝),CU桶和箔纸的破裂以及互连分离等焊接过程后,其中一些问题很明显,而其他问题可能会导致潜在的失败。pth(通过孔进行镀板)可靠性可能会受到无铅焊接的不利影响,具体取决于PCB的厚度,层压材料,焊接轮廓和CU分布,通过几何形状和Cu Plating厚度等。
激光作为热源用于表面改性、焊接、熔覆、定向能量沉积 (DED) 等多种材料加工应用,由于其固有特性而广受欢迎,即易于产生高功率密度、快速加热和冷却速率 (10 3 –10 6 C/s),同时将热影响区和变形降至最低。在这些应用中,DED 是一项相对较新的技术,由于其能够直接从 CAD 模型逐层沉积复杂组件,因此在世界范围内得到了广泛的研究。然而,该过程由于在积聚过程中的热积累而受到各向异性的影响,从而影响最终的微观结构、力学性能和几何完整性 [1]。已有多项研究报告了量化与峰值温度、熔池大小等有关的热积累,并控制工艺参数以实现均匀性。Song 和 Mazumder [2] 使用双色高温计开发了一种基于熔池温度的控制系统。根据温度变化调节激光功率,以改善表面和几何完整性。Ding 等人 [3] 通过感应和控制粉末流速和熔池尺寸,开发了一种机器人激光 DED 系统中的几何再现性实时反馈系统。
这项工作着重于316升底物上的复合涂层(316升染色的钢)的有向能沉积的热建模。开发的有限元模型预测了沉积过程中包裹中部中间部分的热历史和熔体池维度的演变。nu-merical结果与实验分析(光学和扫描电子显微镜和热电偶记录)相关,以验证模型并讨论可能的固化机制。证明,在边界条件下强制对流的实施非常重要,以确保输入能量和热量损失之间的平衡。最高峰值温度显示了第一层的略有增加趋势,其次是明显的稳定,随着外壳高度的增加。通过边界证明了高热量损失。在文献中,大多数建模研究都集中在单层或几层几何上,但这项工作描述了一个多层模型,能够预测沉积过程中的热领域历史记录并提供有关新物料的一致数据。该模型可以应用于重新校准的其他形状。详细介绍了校准方法以及对输入参数的灵敏度分析。©2021作者。由Elsevier Ltd.这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
电子束蒸气发生器(EBVG)广泛用于熔化和蒸发金属的应用。由于高度工作温度和真空边界,经常在EBVG腔中熔化和蒸发金属的实验表征变得具有挑战性。计算分析提供了这种物理现象的重要见解。在这项研究中,在三个不同的EBVG腔中研究了TIN的融化和蒸发。这些空腔可以容纳30cc,70cc和110cc的总充电量。内部通用CFD求解器Anupravaha用于CFD模拟融化和蒸发现象。比较了这三个系统的E梁下,熔融池剖面和TIN的蒸发速率的峰值温度。还研究了熔融池表面上的固体氧化物对熔融池轮廓和蒸发速率的影响。观察到,由于对流电流的变化,随着腔体积的增加,蒸发速率的边缘下降。由于纵横比的变化,熔融池的分数增加了70cc和110cc腔。还观察到,由于表面上存在氧化固体,熔融的部分和锡的蒸发速率略有增加。由于固体氧化物层,熔融池轮廓也发生了变化。这种现象可以归因于熔融金属表面上对流电流轮廓的变化。
半导体制造工艺中的扩散炉用于在硅片表面生长氧化物或将掺杂剂扩散到半导体晶片中。在此过程中,硅片在炉中被加热到通常在 973K 至 1523K 之间的温度。在本研究中,采用二维轴对称模型来模拟在 1123K 温度下运行的垂直炉。对工艺管中含有 175 个直径为 200mm 的硅片的基准情况的轮廓温度分布的模拟结果与实验数据非常吻合。从加热温度为 1123 K 的炉子中获得的实验数据被用作此数值评估的基准。还表明可以对堆叠晶片的本体区域施加均匀加热。在本研究中,探讨了加热器温度和工艺管中排列的晶片之间的间隙对工艺管中温度场的影响。从模拟中可以看出,值得强调的是,堆叠晶片本体区域的温度分布与加热器温度一致。此外,研究发现,在舟皿中对较少数量的晶圆(具有较大的晶圆间隙)进行退火工艺可能不会显著影响炉内的加热性能。关键词:立式炉;石英管;辐射;加热器;绝缘;峰值温度;温度分布版权所有 © 2020 PENERBIT AKADEMIA BARU - 保留所有权利
我们使用瑞典和芬兰福斯马克和奥尔基洛托处置库的数据和条件,对结晶岩中的 KBS-3V 处置库设计进行了耦合热-水-力学建模。研究重点关注处置库性能,即热和水力演化对地下处置库开挖的热-机械损坏可能性的影响。对于福斯马克和奥尔基洛托处置库考虑的设计和条件,模拟显示峰值温度远低于采用的性能目标 100 ◦ C 最高温度,而 KBS-3V 废物沉积孔仍有很大的热-机械损坏可能性。如果岩石渗透性太低,以至于推迟了膨润土-粘土基回填物的饱和和膨胀,使其超过热-机械峰值时间(核废料沉积后 50 至 100 年),则更有可能发生热-机械损坏。我们还发现,由于热应力和回填膨胀的共同作用,KBS-3V 安置隧道的侧壁容易受到拉伸断裂的影响。研究强调了膨润土基回填物和围岩之间通过毛细吸力以及诱发的岩石脱饱和作用产生的强烈相互作用。精心设计和选择 KBS-3V 隧道和沉积孔的膨润土基回填材料可以促进及时饱和和回填膨胀,从而最大限度地减少热机械损伤。
摘要:加速器驱动次临界系统(ADS)是第四代核能系统的最佳候选之一,它不仅可以生产清洁能源,还可以焚烧核废料。ADS的瞬态特性和运行原理与临界核能系统(CNES)有显著不同。本文利用自主开发的中子学和热工水力学耦合程序ARTAP对ADS的安全特性进行了分析,并与CNES进行了比较。在ADS和CNES中都模拟了三种典型事故,包括反应性插入、流量损失和热沉损失。比较结果表明,在反应性插入事故中,CNES反应堆的功率以及燃料、包壳和冷却剂的温度均远高于ADS反应堆,这意味着ADS比CNES具有更好的安全优势。但由于ADS堆芯处于亚临界状态,对负反应性反馈的敏感性较低,模拟结果表明失流事故下CNES的固有安全特性优于ADS,事故发生后ADS的保护系统能迅速启动,实现紧急停堆;对于热沉损失事故,研究发现ADS和CNES反应堆包壳的峰值温度均低于安全极限,这意味着这两座反应堆在失流事故中具有良好的安全性能。
我们使用瑞典和芬兰福斯马克和奥尔基洛托处置库的数据和条件,对结晶岩中的 KBS-3V 处置库设计进行了耦合热-水-力学建模。研究重点关注处置库性能,即热和水力演化对地下处置库开挖的热-机械损坏可能性的影响。对于福斯马克和奥尔基洛托处置库考虑的设计和条件,模拟显示峰值温度远低于采用的性能目标 100 ◦ C 最高温度,而 KBS-3V 废物沉积孔仍有很大的热-机械损坏可能性。如果岩石渗透性太低,以至于推迟了膨润土-粘土基回填物的饱和和膨胀,使其超过热-机械峰值时间(核废料沉积后 50 至 100 年),则更有可能发生热-机械损坏。我们还发现,由于热应力和回填膨胀的共同作用,KBS-3V 安置隧道的侧壁容易受到拉伸断裂的影响。研究强调了膨润土基回填物和围岩之间通过毛细吸力以及诱发的岩石脱饱和作用产生的强烈相互作用。精心设计和选择 KBS-3V 隧道和沉积孔的膨润土基回填材料可以促进及时饱和和回填膨胀,从而最大限度地减少热机械损伤。
锂离子电池组的温度均匀性和峰值降低对于足够的电池性能,循环寿命和安全性至关重要。在使用常规的矩形管道进行气流的气冷电池组中,在管道出口附近的电池冷却不足会导致温度不均匀性和峰值温度升高。本研究提出了一种简单的方法,即使用收敛的锥形气流管道达到温度均匀性并降低气冷锂离子电池组中的峰值温度。使用计算流体Dynamics研究了电池组的强制对流热传输,并使用实验结果验证了计算模型的限制情况。提供给气流管道的提议的融合锥度降低了峰值温度的上升并提高了电池的温度均匀性。对于常规管道,边界层的发育和下游空气温度的升高导致出口附近的细胞上的热点。相比之下,对于所提出的锥形管,流速下游增加,从而改善了出口附近细胞的热量耗散。此外,该研究还研究了锥度角,入口速度和热发生率对流量和热场的影响。值得注意的是,由于锥形角度的增加,由于出口附近的湍流传输的增加,峰温度的位置从出口区域转移到电池组中心区域。在研究中涉及整个进气速和热产生速率的锥度诱导的冷却改善。电池组的峰值温度升高和最大温度差分别降低了20%和19%。提出的有效且简单的方法可以在电动汽车中的电池组中找到其在冷却安排中的应用。
增材摩擦搅拌沉积是一种新兴的固态增材制造技术,可在特定位置沉积具有细小等轴微观结构和优异机械性能的高质量金属。通过结合适当的加工,它有可能生产出大规模的复杂 3D 几何形状。该技术仍处于发展早期,尚未彻底了解热过程的基本原理,包括温度变化和产热机制。在这里,我们旨在通过使用互补红外成像、热电偶测量和光学成像对热场和材料流动行为进行现场监测来弥补这一空白。研究了两种难以通过基于光束的增材技术打印的材料,即 Cu 和 Al-Mg-Si。在两种材料的增材摩擦搅拌沉积过程中,我们发现热特征的趋势相似(例如,峰值温度 T Peak、曝光时间和冷却速率的趋势)相对于加工条件(例如,工具旋转速率 Ω 和面内速度 V )。然而,Cu 和 Al-Mg-Si 之间存在显著的定量差异;T 峰值在 Cu 中与 Ω / V 呈现幂律关系,但在 Al-Mg-Si 中与 Ω 2 / V 呈现幂律关系。我们将这种差异与通过原位材料流动表征观察到的不同界面接触状态相关联。在 Cu 中,材料和刀头之间的界面接触以完全滑动状态为特征,因此界面摩擦是主要的发热机制。在 Al-Mg-Si 中,界面接触以部分滑动/粘附状态为特征,因此界面摩擦和塑性能量耗散都对热量的产生有重大贡献。