性能 提供可尽快驱动应用程序的相关技术 以应用程序为中心 与主要软件合作伙伴密切合作,通过认证和卓越支持帮助确保可靠性和性能。 可扩展性 设计可根据应用程序需求和公司需求进行扩展的系统。 为企业管理 围绕行业标准构建解决方案并帮助简化您的 IT 优化的解决方案 认识到工作站的广泛应用领域,并在系统中提供灵活性以帮助优化它们,满足客户的要求 Dell 与战略性独立软件供应商 (ISV) 合作以认证系统和应用程序兼容性,以便应用程序可以在 Dell Precision 工作站上流畅运行。通过严格的测试,Dell 还瞄准了在要求苛刻的工作环境(例如计算机辅助设计 (CAD)、工程和架构)中的兼容性和优化性能,使 Dell Precision 系列成为要求苛刻的工作站用户的理想平台。 Dell Precision 工作站 Dell 提供了广泛的 ISV 认证工作站。本指南涵盖 R5400 机架式外形尺寸。如此广泛的选择范围有助于提供从 ISV 认证的移动工作站到注重性能的台式机和机架式工作站的广泛选择。R5400 机架式工作站基于最新的 Intel® Xeon™ 核心架构构建,并与 Del
Intel® Core™ i9-13950HX with Intel® UHD Graphics (1.6 GHz E-core base frequency, 2.2 GHz P-core base frequency, up to 4.0 GHz E-core Max Turbo frequency, up to 5.5 GHz P-core Max Turbo frequency, 36 MB L3 cache, 8 P-cores and 16 E-cores, 32 threads), supports Intel® vPro® Technology Intel® Core™ i7-13850HX with Intel® UHD Graphics (1.5 GHz E-core base frequency, 2.1 GHz P-core base frequency, up to 3.8 GHz E-core Max Turbo frequency, up to 5.3 GHz P-core Max Turbo frequency, 30 MB L3 cache, 8 P-cores and 12 E-cores, 28 threads), supports Intel® vPro® Technology Intel® Core™ i5-13600HX with Intel® UHD图形(1.9 GHz E核基本频率,2.6 GHz P核基本频率,高达3.6 GHz E核最大涡轮频率,高达4.8 GHz P核最大涡轮涡轮增压频率,24 MB L3缓存,6个P核和8个e-cores,8个e-cores,20个螺纹,支持Intel®VPRO®CoreIntel®CoreIntel®Core™INTERPRAPTION INTERPRAPTICS INTER®INTERTICTICT ENDERS INTER™I9-149-149-HXER(HUS)基本频率,2.2 GHz P核基本频率,高达4.1 GHz E核最大涡轮频率,高达5.8 GHz P核最大涡轮频率,36 MB L3缓存,8个P核和16个E核,32个线程,32个线程)Intel®Core™I7-14700HX I7-14700HX,具有Intel®ghz up频率(1.5 GHZ UP base base base 9 ghz base base base 3. 3. 3. GHZ 2.1 GHZ PRESY,2.1 GHZ PR频率,2.11 core,2.1 ghz cor,2.1 cor,2.11。涡轮频率,最高5.5 GHz P核最大涡轮频率,33 MB L3缓存,8个P核和12个E核,24个线程)
Intel® Core™ Ultra 5 135H (up to 3.6 GHz E-core Max Turbo frequency, up to 4.6 GHz P-core Max Turbo frequency, 18 MB L3 cache, 4 P-cores and 8 E-cores, 18 threads) Intel® Core™ Ultra 7 165H (Up to 3.8 GHz E-core Max Turbo frequency, up to 5.0 GHz P-core Max Turbo frequency, 24 MB L3 cache, 6 P-cores and 8 E-cores, 22 threads), supports Intel® vPro® Technology Intel® Core™ Ultra 7 155H (up to 3.8 GHz E-core Max Turbo frequency, up to 4.8 GHz P-core Max Turbo frequency, 24 MB L3 cache, 6 P-cores and 8 E-cores, 22 threads) Intel® Core™ Ultra 5 125H (up to 3.6 GHz E-core Max Turbo frequency, up to 4.5 GHz P核最大涡轮频率,18 MB L3缓存,4个P核和8个电子核,18个线程)Intel®Core™Ultra 7 165U(高达3.8 GHz E-Core最大涡轮涡轮频率,高达4.9 GHz PORE PROBO频率,最高4.9 GHz PORE涡轮涡轮频率,最大最大最大涡轮频率 (up to 3.8 GHz E-core Max Turbo frequency, up to 4.8 GHz P-core Max Turbo frequency, 12 MB L3 cache, 2 P-cores and 8 E-cores, 14 threads) Intel® Core™ Ultra 5 135U (up to 3.6 GHz E-core Max Turbo frequency, up to 4.4 GHz P-core Max Turbo frequency, 12 MB L3 cache, 2 P-cores and 8 E-cores, 14 threads), supports Intel®VPro®TechnologyIntel®Core™Ultra 5 125U(高达3.6 GHz E核最大涡轮频率,最高4.3 GHz P核最大涡轮频率,12 MB L3 CACHE,2个P核和8个e-ecores,14个线程,14个线程)
AMD Ryzen™AI Max+ Pro 395(3.0 GHz基本时钟,最高5.1 GHz最大增压时钟,64 Mb L3缓存,16个核心,32个线程,32个线程),带有AMD Radeon™8060S图形和AMD Ryzen™AI(50 npu tops) Max Boost时钟,64 Mb L3缓存,12核,24个线),带有AMD Radeon™8050s图形和AMD Ryzen™AI(50 NPU顶部)AMD Ryzen™AI Max Pro 385(3.6 GHz基本时钟(3.6 GHz基本时钟),最多可达5.0 GHz Max Boost,32 MB L3 Cache,80 sunders,AM 8 emards three torthers,AM 8 ems 16 cache cache chache,8 carke cache cache cache cache cache,8和AMD Ryzen™AI(50 NPU顶部)AMD Ryzen™AI Max Pro 380(3.6 GHz基本时钟,最高4.9 GHz最大增压时钟,16 MB L3 Cache,6芯,12个核心,12个线程,12个线程,12个线程),带有AMD RADEON™8040S图形和AMD RYZEN图形和AMD RYZEN™AI(50 nps)AM澳大利亚AI AI(50 n Puy) (3 GHz base clock, up to 5.1 GHz max boost clock, 64 MB L3 cache, 16 cores, 32 threads) with AMD Radeon™ 8060S Graphics and AMD Ryzen™ AI (50 NPU TOPS) AMD Ryzen™ AI Max 390 (3.2 GHz base clock, up to 5.0 GHz max boost clock, 64 MB L3 cache, 12 cores, 24带有AMD Radeon™8050s图形和AMD Ryzen™AI(50 NPU顶部)AMD Ryzen™AI Max 385(3.6 GHz基本时钟,最高5.0 GHz Max Max Boost时钟,32 MB L3 Cache,8核,16个线程),带有AMD Radeon™80 n™AMD AMD AMD AMD AMD AMD AMD AMD AMD AMD AMD AMD AMD,
随着加利福尼亚大学(UC)在其所有位置恢复正常操作时,与计算机工作站有关的工作环境正在发生重大变化。一些员工将返回现场位置。有些人将继续全职工作。其他人将以混合方式工作,并可能在现场共享工作站。混合工作模型以及共享和酒店工作区提出了与安全和人体工程学有关的独特挑战。这些需要在工作站设计和实施阶段解决。使用此资源中概述的标准来确保共享的酒店空间使员工可以安全,有效地工作。在创建和设计所有新工作站以及购买新设备和家具时应用这些。一般概念
当工作站之间的距离大于 10 m 时,应在停靠工作站和航行和操纵工作站之间提供内部通信系统。航行和操纵工作站与开放式舰桥翼之间应始终提供内部通信系统。如果工作站分布广泛,则应提供内部通信系统,以便在所有操作条件下都能实现畅通无阻的通信。所有命令/行动通信系统都必须是双向的。
摘要:全世界都对使用协作机器人 (Cobots) 来降低工作相关的肌肉骨骼疾病 (WMSD) 风险感兴趣。虽然该领域的先前研究已经认识到在设计阶段考虑人体工程学和人为因素 (E&HF) 的重要性,但大多数研究倾向于强调由于人机协作 (HRC) 而带来的工作站改进。基于文献综述,本研究总结了将 E&HF 视为要求而不是输出的研究。在本文中,作者有兴趣了解现有的研究,这些研究侧重于 Cobots 的人体工程学要求实施,以及用于设计更安全的协作工作站的方法。本次审查是在四个著名的出版物数据库中进行的:Scopus、Web of Science、Pubmed 和 Google Scholar,搜索关键词“协作机器人”或“Cobots”或“HRC”和“人体工程学”或“人为因素”。根据纳入标准,审查了 20 篇文章,并提供了每篇文章的主要结论。此外,重点关注了在 HRC 系统设计阶段考虑 E&HF 的研究与在 HRC 系统上实时应用 E&HF 的研究之间的细分。结果证明了该主题的新颖性,尤其是实时应用人体工程学作为一项要求。在全球范围内,所审查研究的结果表明,将 E&HF 要求集成到 HRC 系统中作为降低 WMSD 风险的相关投入具有潜力。
在此模式下,机器和设备根据产品所需的操作顺序排列成一行。材料按顺序从一个工作站移动到另一个工作站,没有任何回溯或偏差。在此模式下,机器按一个顺序分组。因此,材料被送入第一台机器,成品自动从一台机器传送到另一台机器,一台机器的输出成为下一台机器的输入,例如在造纸厂,竹子从一端送入机器,纸张从另一端出来。原材料从一个工作站非常快速地移动到其他工作站,在制品存储和材料处理最少。
摘要:全世界都对使用协作机器人 (Cobots) 来降低与工作相关的肌肉骨骼疾病 (WMSD) 风险感兴趣。虽然该领域的先前研究已经认识到在设计阶段考虑人体工程学和人为因素 (E&HF) 的重要性,但大多数研究往往强调由于人机协作 (HRC) 而对工作站的改进。基于文献综述,本研究总结了将 E&HF 视为要求而不是输出的研究。在本文中,作者有兴趣了解现有的研究,这些研究侧重于 Cobots 的人体工程学要求的实施,以及用于设计更安全的协作工作站的方法。本次审查是在四个著名的出版物数据库中进行的:Scopus、Web of Science、Pubmed 和 Google Scholar,搜索关键词“协作机器人”或“Cobots”或“HRC”和“人体工程学”或“人为因素”。根据纳入标准,审查了 20 篇文章,并提供了每篇文章的主要结论。此外,重点关注了在 HRC 系统设计阶段考虑 E&HF 的研究与在 HRC 系统上实时应用 E&HF 的研究之间的区别。结果证明了该主题的新颖性,尤其是实时应用人体工程学作为一项要求。从全球来看,所审查研究的结果显示,将 E&HF 要求集成到 HRC 系统中作为降低 WMSD 风险的相关投入具有潜力。