有效的生产计划是基于约束的优化技术的重要应用领域。问题域(例如流程和工作店计划)是广泛的研究目标,解决方法从完整和本地搜索到机器学习方法。在本文中,我们设计和比较了基于约束的优化技术,以在建筑物到印刷业务中调度专业制造过程。目标是分配生产设备,以便尽可能及时完成客户订单,同时尊重机器能力并最大程度地减少解决瓶颈所需的额外轮班。为此,我们提供了几种方法,用于将未决的生产任务安排到一个或多个工作日以执行它们。首先,我们提出了一种贪婪的自定义算法,该算法允许快速筛选改变资源需求和可用性的影响。此外,我们利用这种贪婪的解决方案来参数化和温暖整数线性编程(ILP)和约束编程(CP)求解器对相应的问题公式进行的优化。我们的经验评估是基于Kostwein Holding GmbH的生产数据,GmbH是建筑直通业务的全球供应商,因此证明了我们调度方法的工业适用性。我们还提出了一个用户友好的Web界面,用于为基础求解器提供客户订单和设备数据,图形显示计算的时间表,并促进对更改资源需求和可用性的调查,例如,由于更新订单或包括额外的偏移。
摘要 — 神经符号人工智能是人工智能研究的一个新领域,旨在将传统的基于规则的人工智能方法与现代深度学习技术相结合。神经符号模型已经证明了在图像和视频推理等领域超越最先进的深度学习模型的能力。它们还被证明能够以比传统模型少得多的训练数据获得高精度。由于该领域出现的时间较晚,且已发表的结果相对稀少,这些模型的性能特征尚不清楚。在本文中,我们描述和分析了三种近期神经符号模型的性能特征。我们发现,由于复杂的控制流和低操作强度运算(例如标量乘法和张量加法),符号模型的潜在并行性低于传统神经模型。然而,在它们明显可分离的情况下,计算的神经方面主导着符号部分。我们还发现数据移动会造成潜在的瓶颈,就像在许多 ML 工作负载中一样。索引术语 — 神经符号、机器学习、性能、推理
带有 SMT2 的 5+ GHz 无序流水线 重新设计的分支预测 – 集成的 1 级和 2 级 BTB – 动态 BTB 条目重新配置 – 最多 >270k 个分支目标表条目
加速器本身提供超过 6 TFLOPS 的 16 位浮点吞吐量,每个芯片可扩展到大约 200 TFLOPS。脉动阵列中的 1024 个处理器块组成矩阵阵列,256 个 fp16/32 块组成用于计算激活的加速器,并包含 RELU、tanH 和 log 的内置函数。该平台还提供企业级可用性和安全性,正如人们对 Z 的期望一样,具有虚拟化、错误检查/恢复和内存保护机制。虽然 6 TFLOPS 听起来并不令人印象深刻,但请记住,此加速器针对事务处理进行了优化。与语音或图像处理不同,大多数数据都是浮点数,并且高度结构化。因此,我们相信这款加速器将提供足够的性能,并且无疑比
公司越来越多地在网络边缘生成大量数据。为了从智能传感器和物联网数据中获得最大的商业价值,组织正在寻找支持边缘计算的实时事件流解决方案。计算要求高的工作越来越多地在数据中心之外的边缘执行。人工智能 (AI) 推理是这一趋势的驱动因素之一。边缘服务器为这些工作负载提供了足够的计算能力,尤其是在使用加速器时,但有限的存储通常是一个问题,尤其是在多服务器环境中。在这里,我们展示了如何在边缘环境中部署共享存储,以及它如何在不影响性能的情况下使 AI 推理工作负载受益。
许多NFV工作负载必须以低潜伏期的形式交付才能满足严格的服务水平协议。这些工作负载中的许多具有独特的特征。该软件通常以轮询模式运行,从CPU的角度来看,利用率为100%。这是因为指令总是由CPU核心执行。使用数据平面开发套件(DPDK)的应用程序是此软件体系结构的典型特征。对于内核驱动程序,DPDK中使用的轮询模式驱动程序(PMD)似乎是100%忙碌的,即使可能有很少的数据包流动。因此,在100%利用案件中的内核电源州长并不总是适合电源管理,因为由于投票驱动程序的投票性质,核心利用总是被视为100%忙碌。除了投票外,DPDK软件线程通常不会与其他工作负载共享内核,并且通常与OS调度程序隔离,这意味着它们可以控制电源技术而不会影响核心上运行的其他软件。
• 每个 VAST 数据文件服务器都是双宿主的,通过一个 (1) 100Gb HDR InfiniBand 端口(使用来自 200Gb 交换机端口的双向分离器)连接,以服务来自 DGX A100 系统的存储请求,并通过两个 (2) 100GbE 端口连接到后端存储(以太网)结构。
英特尔® TensorFlow 优化 与 Google 合作,TensorFlow 使用英特尔® oneAPI 深度神经网络库 (oneDNN) 的原语直接针对英特尔® 架构 (IA) 进行了优化。通过设置与 CPU 相关的配置 (--config=mkl) 编译的最新 TF 二进制版本已作为工具包的一部分包含在内。
人工智能 (AI) 曾经只是一些最受欢迎的科幻小说作家的幻想,但现在已在我们的日常生活中扎根。另一个成为现实的科幻小说幻想是物联网 (IoT),它是相互关联的计算设备、机械和数字机器、物体、动物或人的系统,它们具有唯一标识符 (UID),能够通过网络传输数据,而无需人与人或人与计算机的交互。物联网中的“物”可以是植入心脏监护仪的人、带有生物芯片转发器的农场动物、具有内置传感器以在轮胎气压低时提醒驾驶员的汽车,或任何其他可以分配 IP 地址并能够通过网络传输数据的自然或人造物体。