开源 EDA 工具在封闭的 PDK 上同样有效 ◼ 这些工具实际上与工艺技术(或设计)无关 ◼ 访问技术文件使得流程的调整成为可能
土耳其伊斯坦布尔,2022 年 9 月 [-] — 霍尼韦尔 (纳斯达克股票代码:HON) 今天宣布,Biotrend Energy(伊斯坦布尔证券交易所代码:BIOEN)将在 Biotrend Energy 计划在土耳其的塑料回收工厂中应用霍尼韦尔的 UpCycle 工艺技术。该工厂将把混合废塑料转化为再生聚合物原料 (RPF),从而推动塑料循环经济的发展。建成后,它将成为土耳其首个采用霍尼韦尔 UpCycle 工艺技术的商业化废塑料回收工厂。计划中的先进回收工厂预计每年能够利用霍尼韦尔的 UpCycle 工艺技术将 30,000 公吨混合废塑料转化为霍尼韦尔再生聚合物原料。霍尼韦尔 UOP 将提供相关工程和技术服务,包括工厂生命周期内的启动、调试和技术支持服务。该项目标志着霍尼韦尔与 Biotrend Energy 在土耳其先进塑料回收领域的合作正式启动,双方计划未来合作建设多个废塑料回收设施。Biotrend Energy 首席执行官 Osman Nuri Vardı 表示:“Biotrend Energy 是土耳其废物管理领域的领先企业,正在投资可持续循环经济。我完全有信心,我们将与霍尼韦尔一起引领这一领域。Biotrend Energy 在废物管理方面的经验,加上霍尼韦尔的技术,将为 Biotrend Energy 的可持续发展做出贡献。”目前,Biotrend 只能回收一小部分机械回收材料。此外,由于塑料生产过程中的污染、颜色和添加剂等因素,某些类型的塑料废物无法通过机械回收。目前,无法通过机械回收的塑料要么转化为垃圾衍生燃料 (RDF),要么被存放在垃圾填埋场。霍尼韦尔 UpCycle 工艺技术中使用的化学回收可以处理更广泛的废塑料,支持 Biotrend 增加循环材料回收量的努力。霍尼韦尔土耳其、以色列和中亚地区总裁 Uygar Doyuran 表示:“霍尼韦尔的 UpCycle 工艺技术将帮助 Biotrend Energy 应对土耳其的塑料废物问题。”土耳其将能够增加可回收塑料的范围,从而有可能取代一部分化石原料用于新塑料生产。”今天的公告扩大了 UpCycle 工艺技术的足迹,这是霍尼韦尔最近在美国、西班牙和中国发布的公告的延续。Biotrend Energy 是土耳其综合废物管理行业的先驱之一,处理 4,500 吨废物,每年,Biotrend Energy 在土耳其境内的 18 家工厂(包括获得预许可的工厂)处理 2000 吨废物。Biotrend Energy 的业务包括废物转运、回收、填埋、废物转化为能源以及生产有机肥料(堆肥)和 RDF。霍尼韦尔的 UpCycle 工艺技术是一种现成的技术,它利用行业领先的分子转化、热解和污染物管理技术将废塑料转化为 RPF,然后用于制造新塑料。UpCycle 工艺技术扩大了可回收塑料的类型,包括原本无法回收的废塑料,包括彩色、柔性、多层包装和聚苯乙烯。
TI 在电容和磁隔离、封装开发和工艺技术方面的进步可以跨越工业和汽车系统(例如电动汽车 (EV)、电网基础设施、工厂自动化和电机驱动器)中的隔离屏障安全可靠地传输电源和高速信号。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备在紧凑的表面贴装封装中提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离的、多通道和双向高速光耦合器。通过专利工艺技术,以单片形式集成多个光耦合器。这些设备在紧凑的表面贴装封装中提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
如今,创新的轻型结构和高度复杂的飞机部件均采用现代轻型材料(如碳纤维增强塑料 (CFRP))制成。在此背景下,航空工业中纤维复合材料部件的当前生产技术通常具有周期长、材料使用不理想以及返工或精加工工作量大等特点。一种有前途的技术可用于制造轻型、几何形状复杂且功能齐全的部件,既经济又省时,即在单级压缩成型工艺中结合使用热固性片状模塑料 (SMC) 与短切纤维增强材料和预浸渍定制连续纤维增强材料。与传统的复合材料生产技术相比,这种混合材料和工艺技术可缩短周期、实现功能集成、提高设计自由度、优化材料使用并减少返工。对于机舱、货舱以及二级结构飞机部件的制造,可以直接使用金属元件(如嵌件)并使用再生碳纤维。此外,该工艺技术可以完全自动化,从而提高经济效率。因此,本文通过分析和模拟生产适当产品的整体工艺链,探讨了这项新技术的潜力,特别是在降低成本和节省时间方面的潜力。