柔韧性具有应变梯度诱导的机械电性转换,使用不受其晶体对称性限制的材料,但是最新的外部电代材料表现出非常小的外部电代电相系数,并且太脆,无法承受大的变形。在这里,受到生物体的离子极化的启发,本文报告了软性水凝胶的巨大离子旋转电离,其中离子极化归因于弯曲变形下的阳离子和阴离子的不同转移速率。发现频率被水凝胶中的阴离子 - 阳离子对和聚合物网络的类型很容易调节。具有1 M NaCl的聚丙烯酰胺水凝胶可实现≈1160μCm-1的创纪录的外部系数,甚至可以通过与离子对和额外的额外的聚卵链协同作用。此外,由于其固有的低模量和高弹性,水凝胶作为纤维外材料可以承受更大的弯曲变形,从而获得更高的极化电荷。然后证明了一个软弹性传感器,以通过机器人的手识别物体识别。发现大大拓宽了外部电源,以使柔软,仿生和生物相容性材料和应用。
AETC 霍洛曼空军基地 KWRD-2022-00003-00001 霍洛曼空军基地巨型语音升级 AETC 圣安东尼奥-萨姆堡联合基地 502ABW-2020-00021-00001 MCP-LAK-数据 - 用于 ATC 餐饮教室设施 #3 的网络交换设备 AETC 谢泼德空军基地 VNVP-2022-00008-00001 FSS/ATCALS-光纤传输升级 AFMC 廷克空军基地 WWYK-2022-00001-00001 LMR - 72 ABW - 用于 B9501 机库的双向放大器 (BDA) 系统 AFMC 赖特帕特森空军基地 ZHTV-2020-00007-00001 GV - WPAFB 巨型语音升级 AMC 联合基地麦圭尔-迪克斯-莱克赫斯特 PTFL-2020-00017-00001 TC 通信光纤升级第 2 阶段 - TX 和 RX 站点 AMC 小石城空军基地 NKAK-2021-00005-00001 C2-巨型语音系统升级 AMC 特拉维斯空军基地 XDAT-2021-00012-00001 FSS - ATCALS 导航辅助设备和无线电站点设备升级 PACAF 艾尔森空军基地 FTQW-2021-00005-00001 其他 - 巨型语音控制器和无线电升级 PACAF 乌山空军基地 SMYU-2020-00012-00001 无线电 - 更换空中交通管制接收天线塔 USAFE RAF 费尔福德 GKVB-2021-00001-00001 MNS-巨型语音-扩展-RAF 费尔福德 USSF新波士顿 AFS GLEN-2021-00003-00001 新波士顿 AFS 的巨型语音系统
先天性黑素细胞痣 (CMN) 是一种表皮和真皮良性增生性皮肤病。据估计,大型至巨型 CMN 与终生恶性风险增加有关。有必要评估和监测巨型 CMN 的恶性转化风险。迄今为止,临床“ABCD”标准和免疫组织化学研究可能令人困惑,并且在某种程度上具有主观性。因此,需要阐明痣的基因组分析,以更好地了解 CMN 的恶性转化。在这里,我们描述了两个大型至巨型头皮 CMN,其潜在恶性风险的临床组织学和分子评估相反。据我们所知,这是首次对东亚大型至巨型头皮 CMN 的遗传学研究进行描述。我们建议结合仔细的病史和组织学信息来审查分子诊断,以促进对潜在恶性风险的评估。
铁电器已被证明是高性能非易失性记忆的出色基础,其中包括Memristors,这些记忆在人工突触和内存计算的硬件实现中起着至关重要的作用。在这里,据报道,新兴的范德华(Van der Wa)可用于成功实现异突触可变性(一种基本但很少模仿的突触形式),并实现在10 3的上方3级级别的较高量相似的较大范围的较大范围的抗性转换率,并实现抗性切换比。铁电α -In 2 SE 3通道的极化变化负责各种配对端子处的电阻切换。α-In 2 Se 3的第三个端子在PicoAmpere级别表现出对通道电流的非挥发性控制,从而赋予了picojoule读取能量消耗的设备,以效仿缔合性异突触性学习。模拟证明,可以在α -IN 2 SE 3中性网络中实现超级访问和无监督的学习方式,具有较高的图像识别精度。此外,这些弹性设备自然可以实现布尔逻辑,而无需其他电路组件。结果表明,Van der Waals铁电体在复杂,节能,受脑力启发的计算系统和内存计算机中的应用中具有很大的潜力。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是本版本的版权持有人,该版本发布于2023年9月22日。 https://doi.org/10.1101/2023.09.21.558754 doi:Biorxiv Preprint
1 莱布尼茨神经生物学研究所,学习和记忆遗传学系,马格德堡,39118,德国,2 莱比锡大学生物研究所动物生理学系,莱比锡,04103,德国,3 莱比锡大学生物研究所遗传学系,莱比锡,04103,德国,4 魏茨曼科学研究所分子细胞生物学系,雷霍沃特,7610001,以色列,5 亚琛工业大学成像和计算机视觉研究所,亚琛,52074,德国,6 波多黎各大学医学科学园区神经生物学研究所,旧圣胡安,波多黎各,00901,7 剑桥大学生理学、发育和神经科学系,剑桥,CB2 3EL,英国,8 珍妮莉亚研究园区,霍华德休斯医学研究所,阿什本, 20147,弗吉尼亚州,9 莱布尼茨神经生物学研究所,组合神经影像核心设施,马格德堡,39118,德国,10 加利福尼亚大学,分子,细胞和发育生物学系,加利福尼亚州洛杉矶 90095-1606,11 巴黎萨克雷大学,国立科学研究中心,巴黎萨克雷神经科学研究所,萨克雷,91400,法国,12 行为脑科学中心,马格德堡,39106,德国,13 奥托冯格里克大学生物学研究所,马格德堡,39120,德国
本报告描述了四十多岁的妇女的案例,其中有大子宫肌瘤的史,她的肌疼痛和泌尿症状都呈现给急诊室。初始计算机断层扫描(CT)显示出简单的急性憩室炎,但是尽管抗生素治疗,但她的病情恶化,随访的CT揭示了乙状结肠穿孔,需要高前切除术和次序子宫切除术。该病例强调了大肌瘤在结肠上施加外部压力,损害运动性并增加了憩室形成的风险。肠道微生物组的改变可能导致结肠粘膜炎症,通常在憩室疾病中出现。子宫肌瘤患者的微生物组组成改变了,这可能会进一步增加憩室疾病的风险。这些发现为未来研究子宫肌瘤对憩室疾病的病理生理的影响提供了一种途径。
摘要:单分子磁铁{Mn 84}是对理论的挑战,因为它的核性很高。我们使用无参数理论直接计算两个实验可访问的可观察到的可观察到的可观察到的磁化值,最高为75 t和温度依赖的热容量。特别是,我们使用第一个原理计算来得出短期和远程交换相互作用,并计算所有84 MN S = 2旋转的所得经典Potts和Ising Spin模型的确切分区函数,以获得可观察的物品。通过使用绩效张量张量网络收缩来实现后一种计算,这是一种用于模拟量子至上电路的技术。我们还合成了磁铁并测量其热容量和磁化,观察理论与实验之间的定性一致性,并确定热容量中异常的颠簸和磁化强度的高原。我们的工作还确定了大磁铁中当前理论建模的某些局限性,例如对小型,远程交换耦合的敏感性。
事物(IOT)。[9]这些库存的设备的核心是建立高度适应性和皮肤的功能元素,能够通过日常生活的各个方面或通过响应Electials的各个方面或跟踪位置,运动和手势来对环境变化进行重新变化,[2,10]磁性,[2,6,8,11],[5,6,8,11] [5,6,8,11]和Thermal [12]和Thermal [13]。解决方案可以加工的印刷技术对于实现人类交互式和高度合规的设备非常有吸引力,因为它们简单,成本效益且适应于自由定义的功能元素的各种材料。[14-17]关于印刷电子产品的最新报告揭示了可以准备机械性能的可拉伸印刷传感器(应变,力,压力和弯曲),[18-21],这些传感器与人工互动系统,人工智能,先进的ProSthetics和Humanoid Robots中的人际关系系统中有关。要实现合规的电子产品,[22]最先进的方法依赖于直接在超薄聚合物箔上的有机和无机材料的薄膜沉积和光刻处理。[23–25]朝着全印刷的可拉伸电子产品[19,26]和可拉伸的薄膜磁通电子的方向取得了令人兴奋的进度。[27]但是,尚未证明将磁电传感器的可打印和伸展质量结合在一起。这些高领域对于皮肤设备是不可接受的,因为世界卫生组织(WHO)规定的持续展示限制小于40 mt。我们在各种机械上不可察觉的功能元件中,符合磁场传感器及其动作距离距离,可以依靠周围的磁场启用无触摸的对皮肤间的活动,用于从人机相互作用到非vasive医学诊断的应用。[5,11,28]与基于箔的磁电机,印刷的磁敏感设备的出色机械和磁化性能形成鲜明对比[29-33],相当僵硬,支持弯曲到半径超过1 cm [30],到目前为止,它已用于检测高磁场的高磁场。[34,35]即使对于最佳的印刷磁场传感器,这些传感器基于巨型磁场(GMR)效应,相关场范围的灵敏度也很差。
1 莱布尼茨神经生物学研究所,学习和记忆遗传学系,马格德堡,39118,德国,2 莱比锡大学生物研究所动物生理学系,莱比锡,04103,德国,3 莱比锡大学生物研究所遗传学系,莱比锡,04103,德国,4 魏茨曼科学研究所分子细胞生物学系,雷霍沃特,7610001,以色列,5 亚琛工业大学成像和计算机视觉研究所,亚琛,52074,德国,6 波多黎各大学医学科学园区神经生物学研究所,旧圣胡安,波多黎各,00901,7 剑桥大学生理学、发育和神经科学系,剑桥,CB2 3EL,英国,8 珍妮莉亚研究园区,霍华德休斯医学研究所,阿什本, 20147,弗吉尼亚州,9 莱布尼茨神经生物学研究所,组合神经影像核心设施,马格德堡,39118,德国,10 加利福尼亚大学,分子,细胞和发育生物学系,加利福尼亚州洛杉矶 90095-1606,11 巴黎萨克雷大学,国立科学研究中心,巴黎萨克雷神经科学研究所,萨克雷,91400,法国,12 行为脑科学中心,马格德堡,39106,德国,13 奥托冯格里克大学生物学研究所,马格德堡,39120,德国