摘要:背包问题是研究最广泛的NP完整组合优化问题之一,并且具有许多实际应用。本文提出了一种具有灰色狼优化器(QDGWO)的量子启发的差分进化算法,以提高Di-Versity和Connergence性能,并提高0-1个knapsack问题的高维情况下的性能。所提出的算法采用量子计算原理,例如量子叠加状态和量子门。它还使用差异进化的自适应突变操作,差异进化的交叉操作和量子观察来产生新的解决方案作为试验个体。选择操作用于确定存储个体与突变和交叉操作创建的试验个体之间的更好解决方案。如果试验个体比目前的个体还差,则使用自适应灰狼优化器和量子旋转门来保留人口的多样性,并加快寻找全球最佳解决方案的搜索。0-1背包问题的实验结果证实了QDGWO的优势,具有背包问题的有效性和全球搜索能力,尤其是在高维情况下。
摘要:空心线圈电流互感器是数字化变电站建设中的关键设备,但与传统的电磁式电流互感器相比,其更容易受到各种故障的影响。为了了解各种参数对空心线圈电流互感器性能的影响,该文利用最大信息系数法研究了这些因素的影响,并分析了影响因素对互感器误差的干扰机理。最后,采用Stacking模型融合算法对互感器误差进行预测。开发的基础模型由深度学习、集成学习和传统学习算法组成。与门控循环单元和极端梯度提升算法相比,本文提出的基于Stacking模型融合算法的预测模型具有更高的准确性和可靠性,有助于提高未来数字化变电站的性能和安全性。
转录组关联研究 (TWAS) 已广泛用于整合转录组和遗传数据来研究复杂的人类疾病。在缺少转录组数据的测试数据集中,传统的两阶段 TWAS 方法首先通过创建加权和来估算基因表达,该加权和将 SNP 与其相应的顺式 eQTL 对参考转录组的影响聚合在一起。然后,传统 TWAS 方法采用线性回归模型来评估估算基因表达与测试表型之间的关联,从而假设顺式 eQTL SNP 对测试表型的影响是 eQTL 对参考转录组的估计影响的线性函数。为了提高 TWAS 对这一假设的稳健性,我们提出了一种新颖的方差分量 TWAS 程序 (VC-TWAS),该程序假设顺式 eQTL SNP 对表型的影响是随机的(方差与相应的参考顺式 eQTL 效应成比例)而不是固定的。 VC-TWAS 适用于连续和二分表型,以及个体层面和汇总层面的 GWAS 数据。使用模拟数据,我们表明 VC-TWAS 比基于两阶段负担检验的传统 TWAS 方法更强大,尤其是当 eQTL 遗传效应对测试表型不再是其 eQTL 遗传效应对参考转录组的线性函数时。我们进一步将 VC-TWAS 应用于个体层面(N = ~3.4K)和汇总层面(N = ~54K)的 GWAS 数据来研究阿尔茨海默病 (AD)。利用个体层面的数据,我们检测到了 13 个显著的风险基因,包括 6 个已知的 GWAS 风险基因,例如 TOMM40,而传统 TWAS 方法却遗漏了这些基因。利用汇总级数据,我们检测到 57 个仅考虑顺式 SNP 的显著风险基因和 71 个同时考虑顺式和反式 SNP 的显著风险基因,这也通过个体级 GWAS 数据验证了我们的发现。我们的 VC-TWAS 方法已在 TIGAR 工具中实现,供公众使用。
摘要 — 受脑启发的超维计算 (HDC) 是一种新兴的计算范式,它模仿大脑认知并利用具有完全分布式全息表示和(伪)随机性的超维向量。与深度神经网络 (DNN) 等其他机器学习 (ML) 方法相比,HDC 具有高能效、低延迟和一次性学习等优势,使其成为广泛应用的有前途的替代候选者。然而,HDC 模型的可靠性和稳健性尚未得到探索。在本文中,我们设计、实现和评估 HDTest 以通过在罕见输入下自动暴露意外或不正确的行为来测试 HDC 模型。HDTest 的核心思想基于引导式差分模糊测试。在 HDC 中查询超向量和参考超向量之间的距离的引导下,HDTest 不断变异原始输入以生成可能触发 HDC 模型不正确行为的新输入。与传统的 ML 测试方法相比,HDTest 不需要手动标记原始输入。以手写数字分类为例,我们表明 HDTest 可以生成数千个对抗性输入,这些输入的干扰可以忽略不计,可以成功欺骗 HDC 模型。平均而言,HDTest 在一台商用计算机上运行一分钟内可以生成大约 400 个对抗性输入。最后,通过使用 HDTest 生成的输入重新训练 HDC 模型,我们可以增强 HDC 模型的稳健性。据我们所知,本文首次尝试系统地测试这种新兴的受大脑启发的计算模型。
节能(移动) 高可靠性和高压集成(汽车) 轻松模拟/射频集成(5G) 成本和电池效率(物联网) 性能计算(边缘 AI)
深度学习(DL)培训算法利用非确定性来提高模型的准确性和训练效率。因此,多个相同的培训运行(例如,相同的培训数据,算法和网络)产生了具有不同准确性和训练时间的不同模型。除了这些算法因素外,由于并行性,优化和浮点计算,dl libraries(例如Tensorflow和Cudnn)还引入了其他方差(称为实现级别差异)。这项工作是第一个研究DL系统差异以及研究人员和实践中这种差异的认识的工作。我们在三个具有六个流行网络的数据集上进行的实验显示了相同的培训运行中的总体准确性差异。即使排除了弱模型,精度差也为10.8%。此外,仅实施级别的因素会导致相同培训运行的准确性差异高达2.9%,每类准确性差异高达52.4%,训练时间差为145.3%。所有核心库(Tensorflow,CNTK和Theano)和低级库(例如Cudnn)在所有评估版本中均显示实现级别的差异。我们的研究人员和从业人员的调查显示,有83.8%的901名参与者不知道或不确定任何实施级别差异。此外,我们的文献调查显示,最近顶级软件工程(SE),人工智能(AI)和系统会议中,只有19.5±3%的论文使用多个相同的培训运行来量化其DL AP-ap-paraches的方差。本文提高了对DL差异的认识,并指导SE研究人员执行诸如创建确定DL实现之类的挑战任务,以促进调试和提高DL软件和结果的可重复性。
相关图说明了基因表达,SCS电流(MA)和行为评分(BSPB)的百分比之间的关系。a:sham,b:no-scs(sni),C:双相对称SCS,D:单相阴性SCS,E:单相阳极SCS,F:非对称性双相SCS 1:2,G:不对称的双偶联1:0.5。蓝点代表正相关,红点代表负相关。点的大小和黑暗与Pearson相关系数的值成正比
本文提出并评估了用于近阈值计算 (NTC) 的新型电路拓扑。采用 130 nm 技术开发了三种独立的动态差分信号逻辑 (DDSL) 系列,工作电压为 400 mV 和 450 mV。所提出的逻辑系列优于为近阈值实现的当代 CMOS 和电流模式逻辑 (CML) 电路。DDSL 系列被描述为动态电流模式逻辑 (DCML)、锁存 DCML (LDCML) 和动态反馈电流模式逻辑 (DFCML)。通过实现布尔函数和 4 × 4 位阵列乘法器进行仿真和分析。在 450 mV 电源电压下,4 × 4 DFCML 乘法器的总功率降低至 0.95 × 和 0.009 × ,而与 CMOS 和 CML 乘法器相比,最大工作频率分别提高了 1.4 × 和 1.12 ×。与 CMOS 乘法器相比,DCML 乘法器的功耗为 1.48 倍,同时 f max 提高了 1.65 倍。使用开发的动态逻辑系列实现的四个反相器链的能量延迟积 (EDP) 分别为 CMOS 和 CML 实现的 0.27 倍和 0.016 倍。同样使用反相器链评估的 DFCML 和 LDCML 的平均噪声裕度至少比 CMOS 大 2.5 倍。
现代仪器系统和数据采集系统需要低到中等分辨率、中速的模数转换器 (ADC)。由于这些系统大多是便携式的,因此 ADC 规范对功率和面积参数有严格的要求。尽管传统的逐次逼近寄存器 (SAR) ADC 因结构简单、模拟模块少而在这些应用中很受欢迎,但它们占用的芯片面积很大。传统 SAR ADC 采用二进制加权电容电荷再分配数模转换器 (DAC) [1,2]。传统电容电荷再分配 DAC 的两个主要限制是转换速度和庞大的电容阵列。较大的 MSB 电容限制了转换速度。这种架构中使用的 DAC 电容阵列变得非常笨重。文献中提出了一些新方法来提高 SAR ADC 的速度 [3,4]。此外,还提出了一些用于 SAR ADC 的面积效率高的 DAC 架构 [5-7]。其中一些 ADC 在性能系数 (FOM) 方面优于其他 ADC,但由于所用 DAC 架构的类型,面积效率 (AE) 参数会降低。[8、9] 中的 SAR ADC 将分辨率可变性融入传统电荷再分配 ADC,以适应需要不同分辨率的多种信号,适用于生物医学信号采集系统等应用。
在许多多代理交互的环境中,每个代理的最佳选择在很大程度上取决于其他代理的选择。这些耦合的相互作用可以用一般和差分博弈很好地描述,其中玩家有不同的目标,状态在连续的时间中演变,最佳博弈可以用许多均衡概念之一来表征,例如纳什均衡。问题通常允许多重均衡。从这种博弈中的单个代理的角度来看,这种多重解决方案可能会带来其他代理行为方式的不确定性。本文提出了一个通用框架,通过推理其他代理所追求的均衡来解决均衡之间的歧义。我们在多人人机导航问题的模拟中演示了这个框架,得出两个主要结论:首先,通过推断人类所处的平衡状态,机器人能够更准确地预测轨迹;其次,通过发现并使自己适应这种平衡状态,机器人能够降低所有玩家的成本。