5.1 点估计和区间估计,130 5.2 删失,130 5.3 估计方法,132 5.3.1 Menon 方法,132 5.3.2 x 0.10 的顺序统计量估计,134 5.4 威布尔参数的图形估计,136 5.4.1 完全样本,136 5.4.2 删失样本的图形估计,140 5.5 最大似然估计,145 5.5.1 指数分布,147 5.5.2 指数分布的置信区间——II 型删失,147 5.5.3 指数分布的估计——区间删失,150 5.5.4 指数分布的估计分布 - I 型删失,151 5.5.5 指数分布的估计 - 零失效情况,153 5.6 威布尔分布的 ML 估计,154 5.6.1 形状参数已知,154 5.6.2 威布尔尺度参数的置信区间 - 形状参数已知,II 型删失,155 5.6.3 威布尔分布的 ML 估计 - 形状参数未知,157
是谁做出了这些重要的发现,从而形成了我们今天所知的现代空气动力学?首先,我们要感谢丹尼尔·伯努利 (1700-1782),他是艾萨克·牛顿的同时代人,也是伯努利的同事,莱昂哈德·欧拉 (1707-1783) 和乔治·凯莱爵士 (1773-1857) 被一些权威人士视为重于空气的飞行空气动力学之父。许多其他伟人也参与了空气动力学的发展,特别是在 20 世纪上半叶。这些名字可以归功于少数几个 - 比如阿道夫·布塞曼教授、尼古拉·尤可夫斯基、西奥多·冯·卡门、马丁·库塔、路德维希·普朗特、迪特里希·库赫曼博士和理查德·惠特科姆。这个名单并不完整,本书中还提到了其他几个名字;不过,我向那些没有被提及的人表示歉意,他们也为空气动力学做出了巨大贡献。这些早期研究大部分起源于欧洲大陆——瑞士、德国、俄罗斯和英国,其他国家也有少量研究。美国大型 NACA/NASA 研究中心始于 20 世纪,它们为空气动力学研究做出了巨大贡献,至今仍在做出贡献。
广告编号:NITD/PH/AKC/2024/JRF 日期:2024 年 7 月 16 日 NIT Durgapur 招聘以下项目人员的广告 欢迎符合条件的印度公民申请 SERB (DST) 资助项目 (IPA/2021/000048) 的一名初级研究员 (JRF)。候选人将主要在 NIT Durgapur 工作,担任物理系能源研究实验室的成员,并与先进材料中心、NIT Durgapur 以及印度理工学院孟买分校 (能源科学与工程) 和越南国立理工学院纳格浦尔分校 (电气工程) 的成员密切合作。NIT Durgapur 团队的这个项目的目标是开发具有改进的电化学性能 (能量密度、循环稳定性、倍率能力等) 的钠离子混合电容器/电池,以最终集成到智能离网可再生和可持续能源存储管理系统中。
前排: ROYDEN RICHARDSON,第 4 选区;GARY BROWN,第 8 选区;GARY BLAZIS,主席,第 10 选区;RICHARD CLARK,第 1 选区,后排:GREGORY MILNE,第 9 选区;RICHARD ELRICK,第 2 选区;CARL RIEDELL,第 5 选区;JANET JOAKIM,第 6 选区;AUDREY LOUGHNANE,第 11 选区;RICHARD BARRY,第 7 选区; ROBERT JONES,副总统,第 3 选区 David Hansen,摄影 封面: Mercy Otis Warren,W.,马萨诸塞州巴恩斯特布尔 Iyanough,(Iyanno,Iannis)雕像 爱国者,诗人,历史学家,自由捍卫者 Mattachiest 部落的酋长 倡导者 – 权利法案,1728-1814 马萨诸塞州巴恩斯特布尔 Cummaquid – 约 1620 年 雕像 – 巴恩斯特布尔高等法院 雕像 – 海恩尼斯大街 雕塑家:David Lewis 雕塑家:David Lewis James Otis Jr.,W. 马萨诸塞州巴恩斯特布尔 消防员纪念碑 革命爱国者,1725-1783 森特维尔消防局倡导者,演说家,政治家 马萨诸塞州森特维尔 雕像 – 巴恩斯特布尔高等法院 揭幕 – 2002 年 10 月 10 日雕塑家:大卫·刘易斯 雕塑家:大卫·刘易斯
半导体中单个磁性原子的自旋光子接口 总体范围:半导体中的单个自旋对量子信息技术的发展大有裨益。由于其期待已久的相干时间,单个缺陷上的局部自旋是量子信息存储的首选介质,而半导体平台提供了有趣的集成前景。对于充当量子节点的局部自旋的长距离耦合,需要自旋光子接口。这些接口通常基于特定的光学选择规则。对于非光学活性磁性杂质,可以通过它们与半导体载体的交换相互作用实现光学接口。这已在插入半导体量子点 (QD) 的过渡金属元素 (Mn、Cr、Co、Fe 等) 中得到证实。这些磁性元素提供了广泛的局部电子自旋、核自旋和轨道矩选择。 研究主题和可用设施:我们旨在利用 QD 的光学特性来探测和控制嵌入式磁性原子的耦合电子和核自旋的相干动力学。我们将结合射频 (RF) 激发和共振荧光,对单个自旋进行相干控制和探测。实习将专注于开发共振荧光实验,以检测无应变 QD 中 Mn 原子耦合电子和核自旋的磁共振。我们还将开始模拟微柱腔中共振驱动磁性 QD 的光信号自旋诱导波动,这是未来正在开发的自旋光子器件尺寸确定的必要步骤。我们将分析连续共振光学读出下的量子动力学,以展示量子芝诺效应如何有助于增加此类系统中量子信息的存储时间。与我们的合作伙伴合作,我们还将研究具有较大自旋应变耦合的磁性离子 (Cr 2+ 、Co 2+ ),这些离子可以通过表面声波的应变场进行相干控制。我们将致力于模拟局部应变分布对点磁光光谱的影响,以估计它们的自旋应变耦合。实验将在配备磁光低温恒温器(1.5 K、9T/2T 磁体、光学和射频接入)、可调单模和脉冲(ps)激光器(用于共振光激发)和高分辨率光谱仪(用于检测)的微型光谱设备上进行。参考文献:L. Besombes 等人,Phys. Rev. B 107, 235305 (2023) ;V. Tiwari 等人,Phys. Rev. B 106, 045308 (2022) ;V. Tiwari 等人,Phys. Rev. B Letter 104, L041301 (2021) 。可能的合作和交流:这项工作将在 NanoPhysique et Semi-Conducteurs 小组(NPSC,法国国家科学研究院/尼尔研究所和 CEA/IRIG 与筑波大学和华沙大学合作,对部分样品进行了培养。 是否可继续攻读博士学位:是 所需技能:硕士 2(或同等学历),具备固体物理学(电、光、磁特性)、量子力学、光学、光物质相互作用方面的丰富知识。 开始日期:2024 年 3 月(灵活) 联系人:L. Besombes,尼尔研究所,电话:0456387158,电子邮件:lucien.besombes@neel.cnrs.fr 更多信息:http://neel.cnrs.fr