电子与通信工程节点和网格分析、叠加、戴维南定理、诺顿定理、线性电路(RL、RC、RLC)的时间和频域分析连续时间信号:傅里叶级数和傅里叶变换、线性时不变系统:属性、因果关系、稳定性、卷积、频率响应二极管电路:削波、钳位、整流器、BJT 和 MOSFET 放大器:偏置、小信号分析、运算放大器电路:放大器、微分器、积分器、有源滤波器、振荡器、数字表示:二进制、整数、浮点数、组合电路:布尔代数、逻辑门、序贯电路:锁存器、触发器、计数器、数据转换器:采样和保持电路、ADC、DAC、机器指令和寻址模式、算术逻辑单元(ALU)、数据路径、控制单元、指令流水线、反馈原理、传递函数、框图表示、信号流图、数字调制方案:ASK、PSK、FSK、QAM、带宽和通信系统。
数学逻辑:命题逻辑;一阶逻辑:概率:条件概率;卑鄙,中位数,模式和标准偏差;随机变量;分布;制服,正常,指数,泊松,二项式。集合理论与代数:集合,关系,功能,群体,部分订单,晶格,布尔代数。组合学:排列,组合,计数,求和,生成功能,复发关系,渐近学。图理论:连通性,跨越树,切割的顶点和边缘,覆盖,匹配,独立集,着色,平面性,同构。线性代数:矩阵的代数,决定因素,线性方程系统,本特征值和本本矢量。数值方法:线性方程系统的LU分解,通过secant,bisection和Newton-Raphson方法的非线性代数方程的数值解;梯形和辛普森规则的数值集成。微积分:极限,连续性和不同性,平均值定理,积分的定理,确定和不当积分的评估,部分衍生物,总导数,Maxima&Minima。
1。工程数学数学逻辑:命题逻辑;一阶逻辑:概率:条件概率;卑鄙,中位数,模式和标准偏差;随机变量;分布;制服,正常,指数,泊松,二项式。集合理论与代数:集合,关系,功能,群体,部分订单,晶格,布尔代数。组合学:排列,组合,计数,求和,生成功能,复发关系,渐近学。图理论:连通性,跨越树,切割的顶点和边缘,覆盖,匹配,独立集,着色,平面性,同构。线性代数:矩阵的代数,决定因素,线性方程系统,本特征值和本本矢量。数值方法:线性方程系统的LU分解,通过secant,bisection和Newton-Raphson方法的非线性代数方程的数值解;梯形和辛普森规则的数值集成。微积分:极限,连续性和不同性,平均值定理,积分的定理,确定和不当积分的评估,部分衍生物,总导数,Maxima&Minima。
课程成果 成功完成本课程后,学生将能够 CO1:构建简单的数学证明并具备验证它们的能力。 CO2:通过命题和谓词逻辑的形式语言表达数学属性。 CO3:理解和分析递归定义。 CO4:使用图算法解决实际问题。 CO5:使用布尔代数的性质评估布尔函数并简化表达式。 书籍和参考文献 1. 《离散数学要素》,CL Liu、Tata McGraw-Hill 著。 2. 《组合数学导论》,RA Brualdi、Pearson 著。 3. 《面向计算机科学家和数学家的离散数学》,JL Mott、A. Kandel 和 TP Baker、Prentice Hall India 著。 4. 《图论》,F. Harary、Narosa 著。 5. 《离散数学及其应用》,T. Koshy 著,Academic Press 出版 6. 《离散数学及其应用》,KH Rosen 著,Tata McGraw-Hill 出版。 7. 《离散数学结构及其在计算机科学中的应用》,J. Tremblay 著,R. Manohar 著,Tata McGraw-Hill 出版。
2-3 1.4 数字系统 4 5 4-5 1.5 逻辑门 3 8 6-7 2.2 布尔方程 4 12 8-9 2.3 布尔代数 4 16 10 2.4 从逻辑到门 2 18 第 2 单元:组合逻辑设计: 11 2.1 简介 1 19 12 2.5 多级组合逻辑 2 21 13 2.6 X 和 Z 2 23 14-15 2.7 卡诺图 3 26 16 2.8 组合构建块 2 28 17 2.9 时序 2 30 18 4.1 HDL:简介 2 32 19-20 4.2 组合逻辑 2 34 21 4.3结构建模 3 37 22 4.7.1 数据类型 2 39 第 3 单元:时序逻辑设计: 23 3.1 简介 2 41 24-26 3.2 锁存器和触发器 5 46 27-28 3.3 同步逻辑设计 3 49 29-30 3.4 有限状态机 4 53 31-33 3.5 时序逻辑的时序 5 58 34 3.6 并行性 2 60 第 4 单元:硬件描述语言 2: 35-37 4.4 时序逻辑 5 65 38-40 4.5 更多组合逻辑 5 70 41-42 4.6 有限状态机 4 74 43-44 4.8 参数化模块 4 78 45-46 4.9 测试台 4 82 第 5 单元:数字构建模块:
外壳它们与相邻硅原子形成4个共价键。这将形成一个纯晶格,其中没有脱位的电子,并且是绝缘子。硅是一种半导体材料,因此可以通过称为“掺杂”的过程将杂质引入晶体结构来量身定制。最常用的元素是磷和硼。对于标准的NPN或PNP晶体管,术语PNP和NPN术语引用了其中的材料的布置。硅可以通过不存在电子的可移动正电荷(孔)进行操作,或者当结构中存在多余的电子时。用价3离子掺杂(例如Boron)(p-Type)在掺杂价5个离子时会产生带正电荷的材料(例如,磷)(N型)形成带负电的材料[3]。在它们之间的边界中产生一个负耗竭层,该层是由于负电荷相互驱除而阻止更多的电子通过。当通过第三端子将正电压应用于晶体管的底部时,耗尽层被否定,使电子自由流动并完成电路。虽然仍用作开关组件,但事实证明,晶体管在控制当前输入电容器的内存芯片中特别有用。此类存储的值提供了二进制表示的基础。与布尔代数一起,晶体管支撑着每个电子设备的功能。达灵顿晶体管可用于扩增电信号
1. IGNagrath,《模拟电子学》,PHI 2. 《模拟电子学》,AK Maini,Khanna 出版社 3. 《微电子工程》——Sedra 和 Smith-Oxford。 4. 《电子设备和电路原理》——BL Thereja 和 Sedha——S Chand 5. 《数字电子学》——Kharate——Oxford 6. 《数字电子学——逻辑和系统》,J.Bigmell 和 R.Donovan 编著;Cambridge Learning。 7. 数字逻辑和状态机设计(第 3 版)– DJComer,OUP 8. 电子设备与电路理论 – Boyelstad & Nashelsky - PHI 9. Bell-Linear IC & OP AMP—Oxford 10. P.Raja- 数字电子学- Scitech Publications 11. Morries Mano- 数字逻辑设计- PHI 12. RPJain—现代数字电子学,2/e,McGraw Hill 13. H.Taub & D.Shilling,数字集成电子学- McGraw Hill。14. D.RayChaudhuri- 数字电路-Vol-I & II,2/e- Platinum Publishers 15. Tocci,Widmer,Moss- 数字系统,9/e- Pearson 16. J.Bignell & R.Donovan- 数字电子学-5/e- Cenage Learning。 17. Leach & Malvino—数字原理与应用,第 5 版,McGraw Hill 18. Floyed & Jain- 数字基础-Pearson。课程成果:ESC 301.1 定义基本模拟电路,例如放大器、Wein 桥振荡器、多谐振荡器、Schimtt 触发器和 555 定时器。ESC 301.2 使用二进制数字系统和布尔代数的基础知识区分模拟系统和数字系统。
为了概述成人大脑中目标导向行为的行动时间背后的复杂生物节律,我们采用了基于控制系统理论的布尔代数模型。这表明大脑的“计时器”反映了代谢的兴奋-抑制平衡,而目标导向行为(信号变化的最佳范围)背后的健康时钟由大脑层面之间并行序列的 XOR 逻辑门维持。使用真值表,我们发现 XOR 逻辑门反映了各层面之间健康、受控的行动时间事件。我们认为,行动时间的大脑时钟在由经验塑造的多层次、并行序列复合体中活跃。我们展示了从原子级到分子、细胞、网络和区域间各个层面的行动时间代谢成分,它们以并行序列的方式运行。我们采用热力学观点,认为时钟基因计算自由能与熵的关系,并作为主控制器逐级推导出行动时间,并表明它们是信息的接收器和发射器。我们认为,受调控的多级行动时间过程对应于玻尔兹曼微观和宏观状态的热力学定理,并且可用的代谢自由能熵矩阵决定了大脑在特定时刻的可逆状态,以实现与年龄相适应的时序特性。因此,健康的时间尺度不是活动的精确纳秒或毫秒数,也不是行动时间慢与行动时间快的简单表型区别,而是包含一系列可变性,这取决于分子的大小和受体、蛋白质和 RNA 异构体的组成的动态。
即使在神话时代,人类也渴望创造智能机器。古埃及人为自己设计了一条“捷径”,即建造雕像,牧师可以隐藏雕像,同时向民众提供明智的指导。这种“骗局”在人工智能的整个发展过程中一直在发生。人工智能的概念起源于哲学、逻辑和数学,现在已成为现实。公元前四世纪,亚里士多德开创了数据抽象。他的形式逻辑为有效的科学推理提供了一个框架,并为进一步的研究奠定了基础。物质和形式之间的差异仍然是当今计算机科学的基本原则之一。数据抽象是将概念与其实际表示或程序(形式)从封装方法的外壳中分离出来。17 世纪的哲学家 G. Leibniz 对现代代数、算法和符号逻辑产生了重大影响。他认为符号可以用来表达人们的思维方式。莱布尼茨的工作影响了 19 世纪的数学家 G. Boole。在他的书中,[1] 描述了一种符号推理的基本方法,并声称用纯符号处理具有任意项的逻辑命题,以做出合理的逻辑推理。要表现出智能,计算机必须能够推理;这就是布尔代数的作用所在。计算机科学家 A. 图灵 [2] 在 20 世纪的一本哲学杂志上发表了一篇论文。这篇论文的发表被认为是人工智能的“启航”。它描述了著名的图灵测试,并推测了在计算机中编程智能的可能性 [3]。达特茅斯会议的组织者 J. 麦卡锡在 1956 年提出了人工智能的具体概念,将给予的科学
部分I(主题 /学科) - 100个问题工程数学离散数学:命题和一阶逻辑。集,关系,功能,部分订单和晶格。组。图形:连接性,匹配,着色。组合学:计数,复发关系,生成函数。线性代数:矩阵,决定因素,线性方程系统,特征值和特征向量,LU分解。微积分:限制,连续性和不同性。Maxima和minima。平均值定理。集成。概率:随机变量。统一,正常,指数,泊松和二项式分布。是指中位数,模式和标准偏差。条件概率和贝叶斯定理。数字逻辑布尔代数。组合和顺序电路。最小化。数字表示和计算机算术(固定和浮点)。计算机组织和架构机器指令和地址模式。alu,数据路径和控制单元。说明管道。内存层次结构:缓存,主内存和辅助存储; I/O接口(中断和DMA模式)。编程和数据结构编程在C.递归中。数组,堆栈,队列,链接列表,树,二进制搜索树,二进制堆,图。算法搜索,排序,哈希。渐近最差的情况和空间复杂性。算法设计技术:贪婪,动态编程和分裂和串扰。运行时环境。图形搜索,最小跨越树,最短路径。计算正则表达式和有限自动机理论。无上下文的语法和推下自动机。普通语言和无语言,泵送引理。图灵机和不可证明的能力。编译器设计词汇分析,解析,语法定向翻译。中间代码生成。操作系统过程,线程,过程间通信,并发和同步。僵局。CPU计划。内存管理和虚拟内存。文件系统。数据库ER模型。关系模型:关系代数,元组演算,SQL。完整性约束,正常形式。文件组织,索引(例如B和B+树)。交易和并发控制。计算机网络