摘要:超过 6500 万人患有癫痫。癫痫发作的不可预测性大大增加了受伤的风险,尤其是在行走或驾驶等日常活动中。该项目的目的是开发一种精确的预测设备,利用原始脑电图数据预测癫痫发作,提前提醒患者即将发作,以逃离危险情况。使用原始脑电图数据,通过应用快速傅里叶变换计算不同脑波的平均功率谱密度来提取特征。这些特征被用作机器学习算法的输入数据集。每个模型都使用各种指标(例如准确度、精确度、召回率和 F1 分数)用新的未见数据进行测试。性能最高的算法随机森林 (RF) 的预测准确率为 99.0%,精确度为 99.3%。计算了 RF 算法的通道重要性。此分析有助于将通道数量从特征重要性之前的 22 个减少到仅 7 个,而性能指标没有显著影响。使用 RF 算法,开发了一个嵌入式程序,运行在便携式低功耗硬件设备上,以预测癫痫发作的发生。该硬件包括运行开源软件的 BeagleBone Black 微控制器和蓝牙发射器-接收器,用于将预测传输到智能手机设备。通过将 EEG 通道数量减少到 7 个通道,该系统更适合未来的可穿戴设备。具有预测癫痫发作能力的硬件可以使许多患者免于驾驶或游泳等潜在危险情况。它可以通过消除不确定性和改善他们的生活质量来帮助许多患者的日常生活。
摘要 — 由于人口增长和对能源资源的需求增加,人们广泛需要可再生能源 (RES)。RES 价格低廉、储量丰富且无污染。储能系统 (ESS) 对于满足负载要求至关重要。由于其能量密度高,BESS 通常受到青睐。在临时情况下,它对突然变化的反应很慢。储能系统 (ESS) 对于满足负载要求至关重要。由于其能量密度高,BESS 通常受到青睐。在临时情况下,它对突然变化的反应很慢。因此,为了构建 HESS,需要将具有高功率密度的 ESS(例如超级电容器)与电池结合使用。ESS 和 PV 阵列通过 48 V DC 连接器连接。在这项工作中,随着太阳能输出功率的上升,HESS 使用额外的功率来保持负载的电源恒定,并在 PV 无法满足负载需求时将能量返回给负载。建议采用集成控制方法,该方法可以高效地产生双向转换器的开关脉冲。电压控制环路产生流向 HESS 的全部电流。除了设计现有的控制环路外,还进行了稳定性分析。在 HESS 稳定性测试中采用了波特图。结果令人鼓舞,控制器有效地在 SC 和电池之间共享功率并恢复直流链路电压。使用建议的控制器,发现 HESS 在长时间提供平均功率和短时间内管理瞬态情况方面表现良好。索引术语 — 电池、可再生能源、储能系统、混合储能系统、超级电容器。
人工智能(AI)在教育中的影响可以看作是一个多属性的小组决策(MAGDM)问题,其中一些利益相关者根据不同的偏好和标准评估AI应用程序在教育环境中的优势和缺点。MAGDM框架可以通过有条不紊地分析包括道德,社会,教学和技术问题在内的许多组成部分中的交易和冲突来帮助提供透明且合乎逻辑的建议来实施教育中的AI。模糊集理论中的一种新颖的发展是2-元组语言Q -Rung Orthopair模糊集(2TL Q -ROFS),它不仅是一种广义形式,而且还可以整合决策者的定量评估思想和定性评估信息。2TL Q -ROF Schweizer -Sklar加权平均功率平均操作员(2TL Q -ROFSSWPA)和2TL Q -ROF Schweizer -Sklar加权几何(2TL Q -ROFSSWPG)操作员是我们在本文中创建的两个聚合操作员。我们还研究了拟议运营商的一些独特实例和特征。接下来,基于2TL Q -ROF构建了一个新的熵模型,该模型可能利用决策者的偏好以获得属性的理想客观权重。接下来,我们将Visekriterijumska Optimizacija I Kompromisno Resenje(Vikor)技术扩展到2TL Q -ROF版本,该版本为决策者提供了更大的空间来代表他们的决策,同时还考虑了人类认知中固有的不确定性。进行了比较研究以检查开发方法的好处和改善。最后,一个案例研究,讲述了人工智能如何影响教育以显示既定方法的适用性和价值。
摘要:本研究提出了一种适用于消费者住宅区的混合交流/直流微电网,该微电网采用可再生能源,以满足需求。目前,发电和消费经历了重大转变。其中一个趋势是将微电网整合到配电网中,其特点是可再生能源资源的高渗透率以及并联运行。可以采用传统的下垂控制来获得混合交流/直流微电网并联逆变器之间准确的稳态平均有功功率分配。假设具有相同下垂增益的相同逆变器会有相似的瞬态平均功率响应,并且单元之间不会有环流。然而,瞬时功率可能会受到不同线路阻抗的很大影响,从而导致逆变器之间流动的环流功率发生变化,尤其是在负载变化等意外干扰期间。如果该功率被逆变器吸收,则可能导致直流母线电压突然升高并使逆变器跳闸,进而导致整个混合微电网的性能下降。当混合发电机充当单向电源时,问题将进一步恶化。在这项研究工作中,我们提出了一种适用于混合微电网的新型分布式协调控制,该系统可应用于包括可变负载和混合能源的并网模式和孤岛模式。此外,为了选择最有效的控制器方案,设计了参与因子分析以约束直流母线电压并降低循环功率。此外,对于光伏电站和风力涡轮机,都使用了最大功率点跟踪 (MPPT) 技术,以便在环境条件存在差异时从混合电力系统中提取最大功率。最后,通过模拟结果确认了引入的混合微电网策略在不同模式下的可行性和有效性。
摘要:本研究提出了一种适用于消费者住宅区的混合交流/直流微电网,该微电网采用可再生能源,以满足需求。目前,发电和消费经历了重大转变。其中一个趋势是将微电网整合到配电网中,其特点是可再生能源资源的高渗透率以及并联运行。可以采用传统的下垂控制,以便在混合交流/直流微电网的并联逆变器之间获得准确的稳态平均有功功率分配。假设具有相同下垂增益的相同逆变器会有相似的瞬态平均功率响应,并且单元之间不会有循环电流流动。然而,瞬时功率可能会受到不同线路阻抗的很大影响,从而导致逆变器之间流动的循环功率发生变化,尤其是在负载变化等意外干扰期间。如果逆变器吸收了这种功率,可能会导致直流链路电压突然升高并跳闸,进而导致整个混合微电网的性能下降。当混合发电机充当单向电源时,问题会进一步恶化。在本研究工作中,我们提出了一种适用于混合微电网的新型分布式协调控制,该控制可应用于包括可变负载和混合能源的并网和孤岛模式。此外,为了选择最有效的控制器方案,设计了参与因子分析来约束直流母线电压并降低循环功率。此外,对于光伏电站和风力涡轮机,当环境条件存在差异时,最大功率点跟踪 (MPPT) 技术已被用于从混合电力系统中提取最大功率。最后,通过仿真结果证实了引入的混合微电网策略在不同模式下的可行性和有效性。
缺乏能够在金星表面运行和生存的长寿命电源从根本上限制了对这颗迷人星球的实地探索。作为 NASA 创新先进概念 (NIAC) 第一阶段研究的一部分,评估和开发了一种创新的任务架构,利用无线方式将电力从在金星大气中运行的车辆传输到地面着陆器。确定的最有前途的架构是动力飞机,它使用高温太阳能电池阵列在金星大气的上游收集太阳能,并将这些能量存储在机载高温可充电电池中。然后,这个空中平台将下降到云层下方,通过激光能量束将能量传输到金星表面的着陆器。地面着陆器将包括一个激光能量转换器,用于接收光束光能,将其转换为电能,并将其传输到机载高温可充电电池,供着陆器负载使用。在能量传输之后,飞机将上升到更高的高度,再次启动这个循环。通过微波传输传输电力的方案在技术上不可行,因为大气对这些波长的吸收作用很大。同样,对以轨道平台为收集和传送平台的架构的分析也发现,出于同样的原因,在技术上不可行。将气球技术用于飞行器/传送平台显示出一定的前景,但是,这种任务架构需要多个气球平台才能在 60 天的任务中实现着陆器的目标平均功率水平(10 W),以及某种技术成熟度较低的控制机制(叶片或转子)才能飞越着陆器位置。NIAC 第二阶段研究提出了结合激光功率传送的基于飞机的概念以供进一步开发。
摘要。在LBO晶体中具有两个阶段,在193 nm处有60兆瓦的固态深紫外线(DUV)激光器,狭窄的线宽。泵激光器分别来自258 nm和1553 nm,源自自制的YB-Hybrid激光器,分别采用了第四次谐波产生和ER掺杂的纤维激光器。YB-HYBRID激光器最终是功率缩放的2 mm×2 mm×30 mm YB:YAG散装晶体。伴随着221 nm的220兆瓦DUV激光器,193 nm激光器的平均功率为60 mW,脉冲持续时间为4.6 ns,重复速率为6 kHz,线宽约为640 MHz。据我们所知,这是有史以来报告的LBO晶体产生的193 nm激光和221 nm激光的最高功率,也是193 nm激光的最狭窄线宽。 值得注意的是,转化效率为221至193 nm的转化效率为27%,为258至193 nm的转化效率,这是迄今报告的最高效率值。 我们展示了LBO晶体生产数百毫克甚至瓦特级193 nm激光器的巨大潜力,这也铺平了一种新的方式来产生其他DUV激光波长。据我们所知,这是有史以来报告的LBO晶体产生的193 nm激光和221 nm激光的最高功率,也是193 nm激光的最狭窄线宽。值得注意的是,转化效率为221至193 nm的转化效率为27%,为258至193 nm的转化效率,这是迄今报告的最高效率值。我们展示了LBO晶体生产数百毫克甚至瓦特级193 nm激光器的巨大潜力,这也铺平了一种新的方式来产生其他DUV激光波长。
近来,需要高平均功率激光束的应用数量急剧增加,涉及大型项目,如空间清洁 [1]、航天器推进 [2]、粒子加速 [3],以及工业过程 [4] 或防御系统 [5]。激光光束组合是达到极高功率水平的最常用方法之一,特别是相干光束组合 (CBC) 技术 [6]。它们旨在对放大器网络传输的平铺激光束阵列的发射进行相位锁定,以产生高亮度的合成光束。由于实际激光系统(尤其是光纤激光系统)中阵列中光束之间的相位关系会随时间演变,因此这些技术必须通过伺服环路实时校正合成平面波的相位偏差。近年来,CBC 技术得到了广泛发展,探索了调整合成离散波前中各个相位的不同方法。它们可以分为两大类。在第一类中,测量阵列中光束的相位关系,然后进行校正 [7]。在第二种方法中,实际波前和期望波前之间的差异通过迭代过程得到补偿 [8]。在后一种情况下,优化算法驱动反馈回路,分析所有光束之间干涉的阵列相位状态的更多全局数据 [9,10]。这些技术通常更易于实施,所需电子设备更少,但需要更复杂的数值处理,其中一些技术在处理大量光束时速度会降低。最后一个问题与反馈回路中达到预期相位图所需的迭代次数有关,该迭代次数会随着要控制的相位数的增加而迅速增加。最近,人们研究了神经网络 (NN) 和机器学习,以期找到一种可能更简单、更有效的方法来实现相干光束组合。已发表的文献 [11] 中涉及的一种方案依赖于卷积神经网络 (VGG) 的直接相位恢复,然后一步完成相位校正,例如在自适应光学 NN 的开创性工作 [12]。 NN 用于将光束阵列干涉图样的强度(在透镜焦点处形成的远场或焦点外的图像、分束器后面的功率等)直接映射到阵列中的相位分布中。恢复初始相位图后,可以直接应用相位调制将相位设置为所需值。[11] 中报告的模拟表明,当阵列从 7 条光束增加到 19 条光束时,基于 CNN 的相位控制的精度会下降。这一限制在波前传感领域也得到了强调,因此 NN 通常仅用作初始化优化程序的初步步骤 [13]。另一种可能的方案是强化
如今,热量储能(TES)在高度有效的热能系统的发展中起着至关重要的作用[1]。该主题正在激发对科学界的日益兴趣,在许多情况下,通过借用和使用新的且可实现的方式,在热泵和热驱动系统的领域获得的研究结果[2,3]。适当使用TES系统可以促进可再生能源的有效利用,从而使能源生产与对不连续能源的需求和/或可变负载的需求之间的不匹配。此外,基于吸附或化学反应的特殊类TES系统的特殊类别可以长期存储可再生热量。热化学技术基于两个组件之间发生的可逆反应,并且与基于明智的热量的系统相对于系统存储的能量较高[4]。此外,它可以有效地支持在本地智能电网中可再生能源的操作和集成。证明了这一有趣的功能,在[5]中,作者回顾了有关热化学热化学热量储能系统的理论,实验和数值研究的最新状态,并在功率热应用中使用,重点关注具有可再生能源可为能源提供能源电网提供的可再生能源的应用。作者强调了该技术的优势:灵活性,负载管理,电源质量,连续的电源以及增强可变可再生能源的使用。这些特征被认为是重要的要素,以增加这些存储系统的商业利益。甚至是作者提出了特定的挑战,即存储材料的寿命和稳定性以及高功率加热/热化学系统的高成本,作为提高技术准备水平的方面。热化学TES系统,尤其是基于吸附过程的系统,可以允许设计和实施前所未有的移动应用解决方案。在[6]中,我们通过实验活动证明了紧凑型系统用于移动商业应用冷藏的可行性。在我们的工作中,我们描述了基于两个创新的吸附剂反应器的两种不同类型的冷藏物的实现和测试:一种充满了商业FAM Z02沸石的吸附剂,以及基于铝制多孔结构的复合吸附剂,并具有SAPO-34涂料。专门测试程序的应用允许在冷存储模式下以移动制冷目的表征原型。结果表明,原型可以存储高达580 WH,在放电阶段的平均功率为200至820 W且能量效率为0.3,从而揭示了未来进一步发展的有希望的机会。但是,必须在材料和系统级别进行的适当研究来支持这种未来的发展。例如,解决与吸附剂材料有关的问题或对新类沸石的研究可以支持对更多有效,紧凑和轻量级吸附TE的研究。一系列的机械义务 -为此,[7]的作者提出了一种新型的有机硅-SAPO34复合材料,该复合材料是通过硅氧烷化合物之间脱氢偶联反应激活的霉菌泡沫过程,用于在吸附TES系统中应用。
现在通常会理解人类肠道菌群对健康和疾病的影响。因此,微生物组研究对体育社区产生了兴趣,希望改善健康并优化绩效也就不足为奇了。比较研究发现,与久坐的对照相比,新的物种或途径更富含精英。还确定了,特定于运动水平的微生物组特征。 但是,结果仍然没有定论,并表明需要进一步评估。 在这项病例对照研究中,我们测试了两个运动人群(即 strength athletes, endur- ance athletes) and a non-athletic, but physically active, control group across two acute exer- cise bouts, separated by a 2-week period, that measured explosive and high intensity fitness level (repeated 30-s all-out Wingate test (WT)) and cardiorespiratory fitness level (Bruce Treadmill Test). 尽管我们没有确定基线时α和β多样性的任何组差异或微生物组成分的显着差异丰度,但鉴定出的三分之一的物种是每组独有的。 纵向样本(运动前和运动后)分析显示,在WT期间,强度组的Alistipes Communis和88种在Bruce测试期间具有显着的组间差异。 SPARCC识别的双歧杆菌长杆菌和双歧杆菌青少年,具有益生菌特性的短链脂肪酸生产者,物种与vo 2 max密切相关。 我们的结果证实,个体的健康状况与关于微生物组健康的假设一致。,特定于运动水平的微生物组特征。但是,结果仍然没有定论,并表明需要进一步评估。在这项病例对照研究中,我们测试了两个运动人群(即strength athletes, endur- ance athletes) and a non-athletic, but physically active, control group across two acute exer- cise bouts, separated by a 2-week period, that measured explosive and high intensity fitness level (repeated 30-s all-out Wingate test (WT)) and cardiorespiratory fitness level (Bruce Treadmill Test).尽管我们没有确定基线时α和β多样性的任何组差异或微生物组成分的显着差异丰度,但鉴定出的三分之一的物种是每组独有的。纵向样本(运动前和运动后)分析显示,在WT期间,强度组的Alistipes Communis和88种在Bruce测试期间具有显着的组间差异。SPARCC识别的双歧杆菌长杆菌和双歧杆菌青少年,具有益生菌特性的短链脂肪酸生产者,物种与vo 2 max密切相关。我们的结果证实,个体的健康状况与关于微生物组健康的假设一致。最终,我们确定了几个基线丰度不同的分类单元和基于个人的最大值,平均功率和最大功率参数进行比较时,具有不同的基线丰度和持久的变化。此外,我们的发现表明,微生物组的特征与以前在精英运动员中确定的更好的表现相关。
