大型语言模型 (LLM) 越来越多地用于生成各种用例中的文本,包括新闻文章。鉴于这些 LLM 可能用于大规模生成虚假信息的潜在恶意性质,为此类 AI 生成的文本构建有效的检测器非常重要。鉴于新 LLM 开发的激增,获取监督检测器的标记训练数据是一个瓶颈。但是,可能有大量未标记的文本数据可用,而没有关于它来自哪个生成器的信息。在这项工作中,我们解决了这个数据问题,即检测 AI 生成的新闻文本,并将问题构建为无监督领域自适应任务。这里的域是不同的文本生成器,即LLM,我们假设我们只能访问标记的源数据和未标记的目标数据。我们开发了一个对比域自适应框架,称为 ConDA,它将标准域自适应技术与对比学习的表示能力相结合,以学习对最终无监督检测任务有效的域不变表示。我们的实验证明了我们框架的有效性,平均性能提升了 31 .与最佳表现基线相比提高了 7%,在 0 .全监督检测器的 8% 范围内。我们所有的代码和数据都可以在这里找到。
基于运动想象的脑机接口 (MI-BCI) 依赖于人与机器之间的交互。因此,两个组件的(学习)特性对于理解和提高性能至关重要。数据驱动方法通常用于选择/提取几乎没有神经生理先验的特征。这种方法是否应该包括先验知识,如果是,那么包括哪些?本文研究了 BCI 性能与由流行的启发式算法选择的特定于受试者的最具判别力的频带 (MDFB) 的特征之间的关系。首先,我们的结果显示所选的 MDFB 特性(平均值和宽度)与性能之间存在相关性。然后,为了调查可能的因果关系,我们在线比较了使用受限(强制与高性能相关的特性)和不受约束的算法获得的性能。虽然我们无法得出因果关系的结论,但使用受限算法的平均性能最高。最后,为了更好地了解 MDFB 特性与性能之间的关系,我们使用机器学习来 1) 使用 MDFB 特性预测 MI-BCI 性能和 2) 为每个受试者自动选择最佳算法(受约束或不受约束)。我们的结果表明,对于具有明显不同或没有明显 EEG 模式的受试者,受约束算法可以提高其性能。
1.1. 合规执行机构:“合规执行机构”是指 NERC 或区域实体,或由相关政府机构指定的任何实体,它们在各自的管辖范围内负责监控和/或执行强制性和可执行的可靠性标准。1.2. 合规监控期和重置时间框架:如果发电单元/发电设施完成缓解计划并实施纠正措施以满足标准的 R9 和 R10 要求,并且如果获得 BA 和合规执行机构的批准,则发电单元/发电设施可以在 FME 期间的下一次性能中开始新的滚动事件平均性能。这将计为性能计算中的第一个事件,并且实体将在连续 12 个月或每个 R9 和 R10 的 8 个事件后获得平均频率性能得分。1.3. 证据保留:以下证据保留期确定实体需要保留特定证据以证明合规的时间段。例如,当下文规定的证据保留期短于自上次审计以来的时间时,合规执法机构可能会要求实体提供其他证据,以证明其自上次审计以来的全时段内都是合规的。
Abigail Russo 是 Meta Reality Labs 的一名研究科学家,她正在研究使用非侵入式腕戴式脑机接口扩展人类运动能力的策略。她在哥伦比亚大学师从 Mark Churchland 攻读博士学位,研究了自愿运动过程中的运动皮层网络功能,借鉴了人工神经网络的见解。 演讲题目:一种适用于整个人群的人机交互腕式表面肌电图神经运动接口 描述:我们描述了一种非侵入式神经运动接口的开发,该接口允许使用表面肌电图 (sEMG) 进行计算机输入。我们开发了一个高灵敏度和强大的硬件平台,可以轻松戴上/脱下,以感应手腕上的 sEMG 并将有意识的神经运动命令转换为计算机输入。我们将此设备与一个经过优化的基础设施配对,可以收集来自数千名同意的参与者的训练数据。这使我们能够开发通用的 sEMG 神经网络解码模型,该模型具有跨人群的高性能开箱即用泛化能力(测试用户在连续导航任务中的平均性能:0.5 次目标获取/秒;离散手势检测任务:0.9 个手势/秒;手写任务:19.6 个字/分钟)。
摘要 - 不像众所周知的计数器模式内存en-哭泣(例如SGX1),更近期的内存加密(例如SGX2,SEV)没有柜台。在不访问任何计数器的情况下,这种无反内存加密可以改善计数器模式加密的性能,并因此获得广泛的采用。无抵抗的加密仍然会产生昂贵的开销。在无反加密后,密码计算将数据作为其直接输入。因此,只有在丢失的数据从内存到达后,才能顺序计算用于解密数据的密码;这需要所有最后级别的缓存失误才能在所需数据从内存到达后停滞在密码计算上。我们的实际系统测量结果发现无反加密可以平均减少不规则的工作量9%。我们观察到计数器模式加密会产生昂贵的内存访问开销,其密码计算通常可以在数据到达之前完成,因为它们将计数器作为输入而不是数据,而不是数据柜员比数据更好。因此,我们探讨了如何结合两种加密模式以实现两全其美的最佳 - 无反对加密的有效内存访问和计数器模式加密的快速密码计算。对于不规则的工作负载,我们提出的内存加密 - 反灯加密 - 达到98%的无内存加密性能的平均性能。当存储器带宽饥饿时,在最坏情况下,反光加密的速度仅比无抵抗加密慢1.4%。
视觉模型(VLM)的在线测试时间适应(OTTA)最近引起了人们的注意,以利用沿流观察到的数据,以改善未来的预测。不幸的是,现有方法依赖于数据集特异性的超参数,从而大大限制了它们对看不见的任务的适应性。为了响应,我们提出了在线高斯适应(OGA),这是一种新颖的方法,该方法使用高斯分布来对视觉特征的可能性进行建模,并将零摄影先验纳入可启动的最大a后验(MAP)估计框架中,并与所有数据集中的固定超参数一起使用。我们证明,在大多数数据集和运行中,OGA优于最先进的方法。此外,我们表明,将OTTA与流行的几弹技术结合起来(一种实用但被忽视的先前研究环境)是非常有益的。此外,我们的实验研究表明,由于所有OTTA方法在运行中观察到的实质性可变性,常见的OTTA评估方案的平均性能在每个数据集中最多要超过三个。因此,我们主张更多的索式评估实践,包括增加运行的数量和考虑其他定量指标,例如我们提出的预期尾巴准确性(ETA),计算为最差10%的运行中的平均准确性。我们希望这些贡献将鼓励OTTA社区中更严格,更多样化的评估实践。代码可在https://github.com/cfuchs2023/oga上找到。
摘要 — 深度神经网络 (DNN) 已被证明在图像识别、物体检测、机器人技术和自然语言处理等广泛应用中均优于传统机器学习算法。然而,DNN 的高计算复杂度通常需要极其快速和高效的硬件。随着神经网络规模呈指数级增长,问题变得更加严重。因此,已经开发了定制的硬件加速器来加速 DNN 处理而不牺牲模型准确性。然而,以前的加速器设计研究没有充分考虑目标应用程序的特点,这可能导致架构设计次优。另一方面,已经开发了新的 DNN 模型以提高准确性,但它们与底层硬件加速器的兼容性往往被忽视。在本文中,我们提出了一个应用驱动的框架,用于探索 DNN 加速器的架构设计空间。该框架基于单个 DNN 操作的硬件分析模型。它将加速器设计任务建模为一个多维优化问题。我们证明它可以有效地用于应用驱动的加速器架构设计:我们使用该框架优化八个代表性 DNN 的加速器配置,并选择具有最高几何平均性能的配置。相对于仅针对每个 DNN 优化的架构配置,所选 DNN 配置的几何平均性能改进范围为 12.0% 至 117.9%。给定一个目标 DNN,该框架可以生成具有优化性能和面积的高效加速器设计解决方案。此外,我们探索了在同时使用多种 DNN 应用的情况下使用该框架进行加速器配置优化的机会。该框架还能够改进神经网络模型,以最适合底层硬件资源。我们证明它可用于分析目标 DNN 的操作与相应加速器配置之间的关系,在此基础上可以调整 DNN 以在给定加速器上获得更好的处理效率,而不会牺牲准确性。
将正电子发射断层扫描(PET)用作β-淀粉样蛋白(Aβ)脑病理学的初始或唯一生物标志物可能会抑制阿尔茨海默氏病(AD)由于成本,获取和耐受性而引起的药物开发和临床使用。我们开发了一种QEEG-ML算法,以预测主观认知下降(SCD)和轻度认知障碍(MCI)患者之间的β病理,并使用βPET验证了它。我们比较了MCI患者与患有和没有PET固定的β-淀粉样蛋白斑块患者之间的QEEG数据。We compared resting-state eyes-closed electroencephalograms (EEG) patterns between the amyloid positive and negative groups using relative power measures from 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2), divided into eight frequency bands, delta (1-4 Hz),theta(4-8 Hz),Alpha 1(8-10 Hz),Alpha 2(10-12 Hz),β1(12-15 Hz),β2(15-20 Hz),Beta 3(20-30 Hz)和gamma(30-45 Hz),由Fft和DeNocy cancys cancys concy.s.使用遗传算法策略分析了所得的152个特征,以识别最佳特征组合并最大程度地提高分类精度。在基因建模方法的指导下,我们将脑电图的每个通道和频率带作为基因,并在给定维度内用所有可能的组合对其进行了建模。然后,我们收集了显示出最佳性能并识别出在上级模型中最常出现的基因的模型。通过重复此过程,我们收集了一个近似最佳的模型。我们发现,随着遗传算法的这种迭代发展的发展,平均性能的增加。我们最终达到了85.7%的敏感性,89.3%的特异性,SCD淀粉样蛋白阳性/负分类的精度为88.6%,83.3%的敏感性和83.3%的敏感性,85.7%的特异性特异性,而MCI MCI淀粉样蛋白淀粉样蛋白阳性阳性/负分类的精度为84.6%。